

عوایض سے کہہ بینیں:

نمازن ایله: اگر ہے جسم بیرونی وارد نہ در سے جسم تغیر نہ لے۔ (اگر سن بدلہ، سالنہ ہانہ را ترجمہ بدلہ) باہم
کا بے بہ حرکت فنڈو ایله (AO)

نمازن حکم: دُر ہے جسم اپنے دار دلہ سُبھی کا کیا کہ بینہ در اپنے میمہ و با جم جسم را بھے عس دارہ:

$$a = \frac{F}{m} \quad (F = ma)$$

ماننل سوم اگر کوئی جسم بہ جسم کیلئے بیرونی دلہ، جسم دلہ بہتر بیرونی برابر با ہان بیرونی در قلاف جس بہان ولدیں لئے
 $F_{1,2} \leftarrow \rightarrow F_{2,1}$ $|F_{1,2}| = |F_{2,1}|$

An isolated system is made of two point masses m_A and m_B .

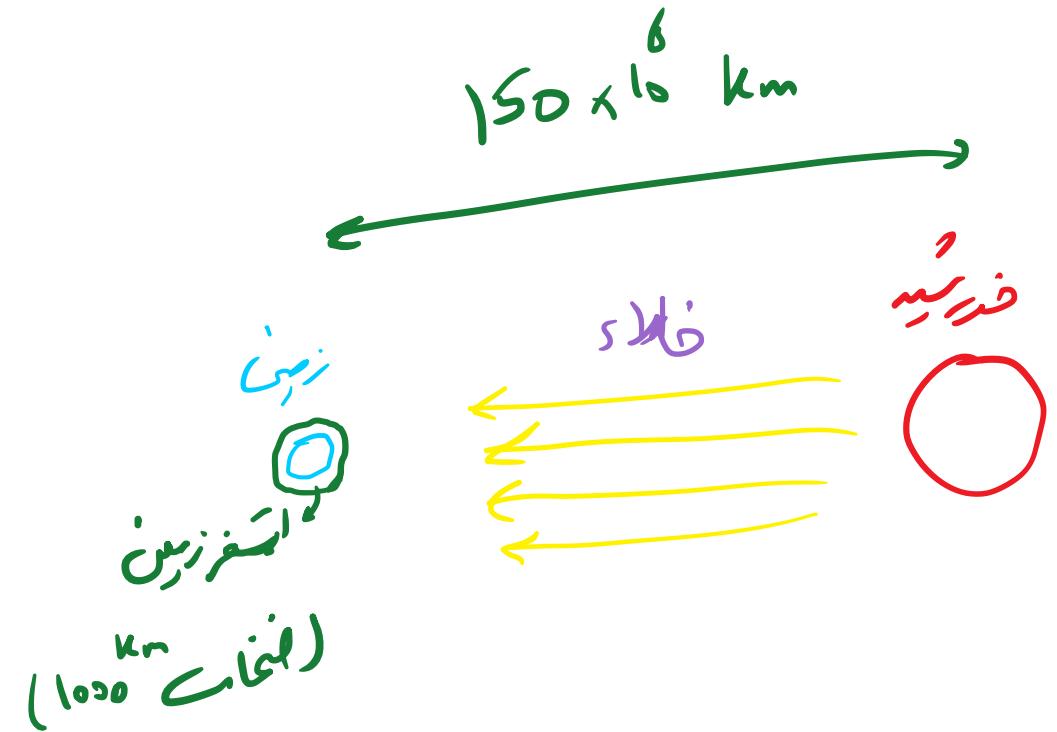
Therefore, the acceleration of each mass is caused only by the force exerted by the other mass, and not by external forces.

Let a_A and F_A be the magnitude of the acceleration and of the net force acting on m_A , and a_B and F_B the magnitude of the acceleration and of the net force acting on m_B .

Then, at every time t ,

- A. $a_A = a_B$
- B. $\frac{a_A}{a_B} = \frac{m_B}{m_A}$
- C. $\frac{a_A}{a_B} = \frac{F_A}{F_B}$
- D. $\frac{a_A}{a_B} = \frac{m_A}{m_B}$
- E. $\frac{a_A}{a_B} = \frac{F_B}{F_A}$

Diagram illustrating the interaction between two masses m_A and m_B . Mass m_A is on the left, and mass m_B is on the right. A horizontal arrow labeled F_A points from m_A to m_B , and a horizontal arrow labeled F_B points from m_B to m_A . The equation $m_A a_A = F_A$ is written near m_A , and the equation $m_B a_B = F_B$ is written near m_B . A bracket below the equations indicates that $|F_A| = |F_B|$.


$$m_A a_A = F_A$$
$$m_B a_B = F_B$$
$$|F_A| = |F_B|$$
$$\frac{a_A}{a_B} = \frac{m_B}{m_A}$$

A manometer is used to measure

- A. the pressure
- B. a length of order of magnitude $10^{-9} m$
- C. the volumetric flow rate
- D. the density of a liquid
- E. a length in inches

The light reaching us from the stars mostly propagates

- A. through interstellar hydrogen
- B. through interstellar dust clouds
- C. in the ether
- D. through the atmosphere
- E. in vacuum

A temperature of 100°C (degrees Celsius) is equivalent to

$$\frac{^{\circ}\text{C}}{0} \xrightarrow{\text{K}} \boxed{^{\circ}\text{C} + 273.15 \xrightarrow{\text{cirkel}} \text{K}}$$

- A. 273.15 K
- B. -100 K
- C. 373.15 K
- D. 293.15 K
- E. 100 K

$$100^{\circ}\text{C} + 273.15 = 373.15 \quad \times$$

A charged particle is travelling through a magnetic field. Can this particle move on a straight line?

فرهیارد

مہمان مہمان

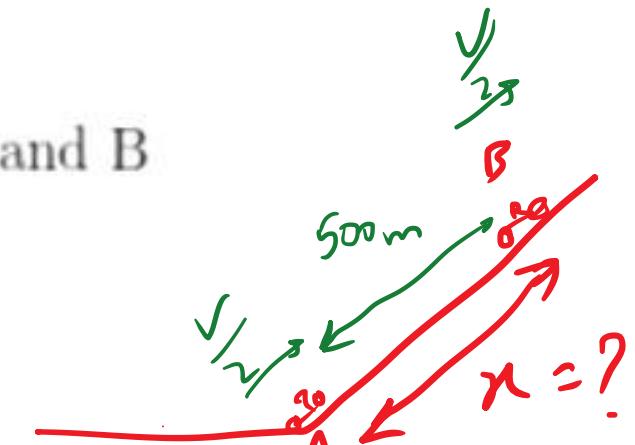
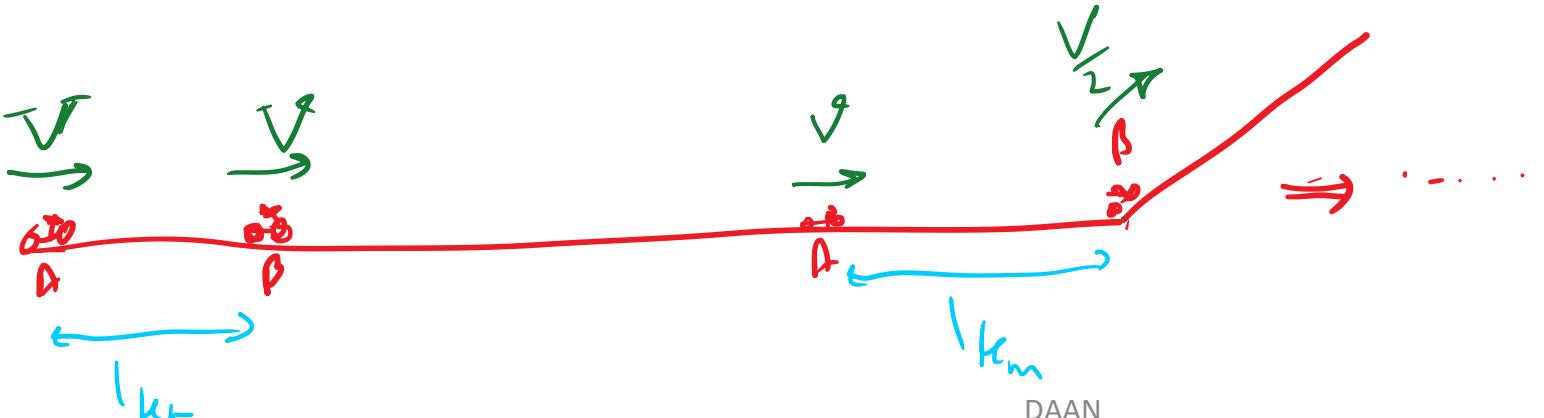
- A. No, the trajectory is always curved
- B. Yes, but only if the particle starts from rest
- C. Yes, unless the velocity of the particle is parallel to the direction of the magnetic field
- D. Yes, if the velocity of the particle is parallel to the direction of the magnetic field
- E. Yes, if the velocity of the particle is perpendicular to the direction of the magnetic field

$$F = qVB \sin\theta \rightarrow \theta = 0$$

میان مخنثیں

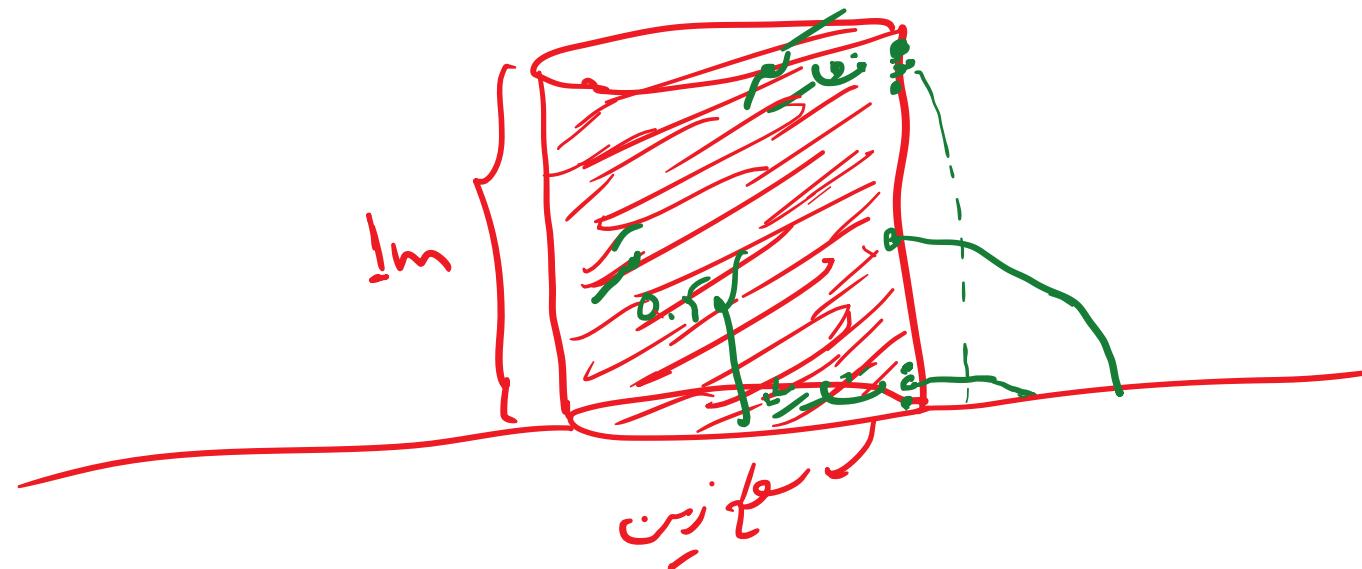
اے گارڈ در امدادِ حمایت نہیں
ولارڈ کھانہ کس جسم در امدادِ فعلِ مرتبت
میں کوئی بھر کے خود ارامدہ.

الحمد لله

DAAN ACADEMY

پرسش

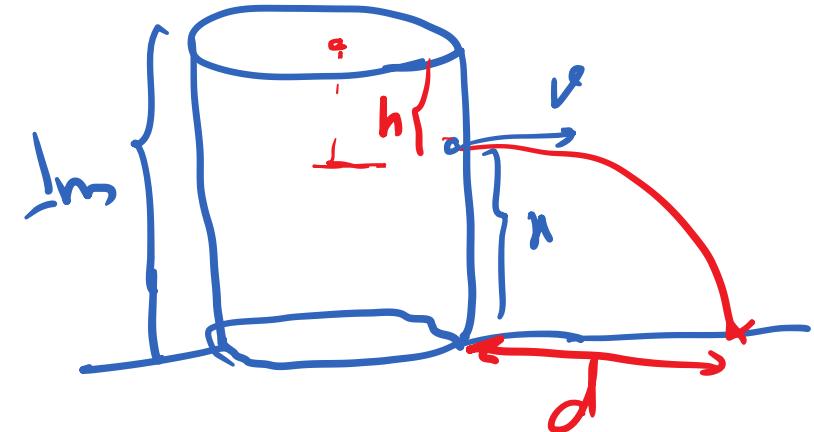
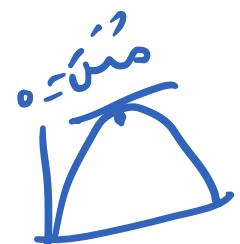

A cyclist A follows another cyclist B at a distance of 1km, and the two cyclists proceed at the same speed. Suddenly the road begins to climb with a constant slope. If we assume that both cyclists halve their speed when they start to climb, what is their distance when they both reach the sloping part of the road?

- A. 2km
- B. 1km
- C. 500m
- D. 250m
- E. No answer can be given without knowing the initial speed of A and B

A cylindrical container, placed on a horizontal table, is filled with water up to a height of 1 m . At which height should we make a hole, so that the water jet pouring out of the container hits the table at the largest possible distance from the wall of the cylinder? (Assume that water is an ideal fluid)

- A. $0,65\text{ m}$
- B. $0,45\text{ m}$
- C. $0,50\text{ m}$
- D. $0,25\text{ m}$
- E. $0,75\text{ m}$

پیشنهاد میکنیم که $mg h = \frac{1}{2} \rho h V^2$ $\rightarrow V^2 = 2gh$



$$V^2 = 2g(1-r)$$

$$\frac{2n}{g} = \frac{d^2}{2g(1-r)}$$

$$4\pi(1-r) = d^2 \rightarrow 4\pi - 4\pi r = d^2$$

بنابراین $4 - 8r = 0$

$r = 0.5$

$$d = Vt \rightarrow d^2 = V^2 t^2$$

$$x = \frac{1}{2} g t^2 + V_0 y t$$

$$\begin{cases} t^2 = \frac{2n}{g} \\ d^2 = \frac{d^2}{V^2} = \frac{d^2}{2g(1-r)} \end{cases}$$

نڑاںہ آدیا بائیس (آرٹیا بیا دل نوو)

اٹریہ دانل

اٹریہ

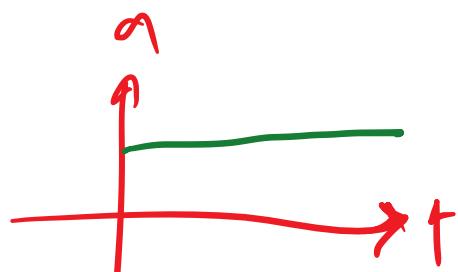
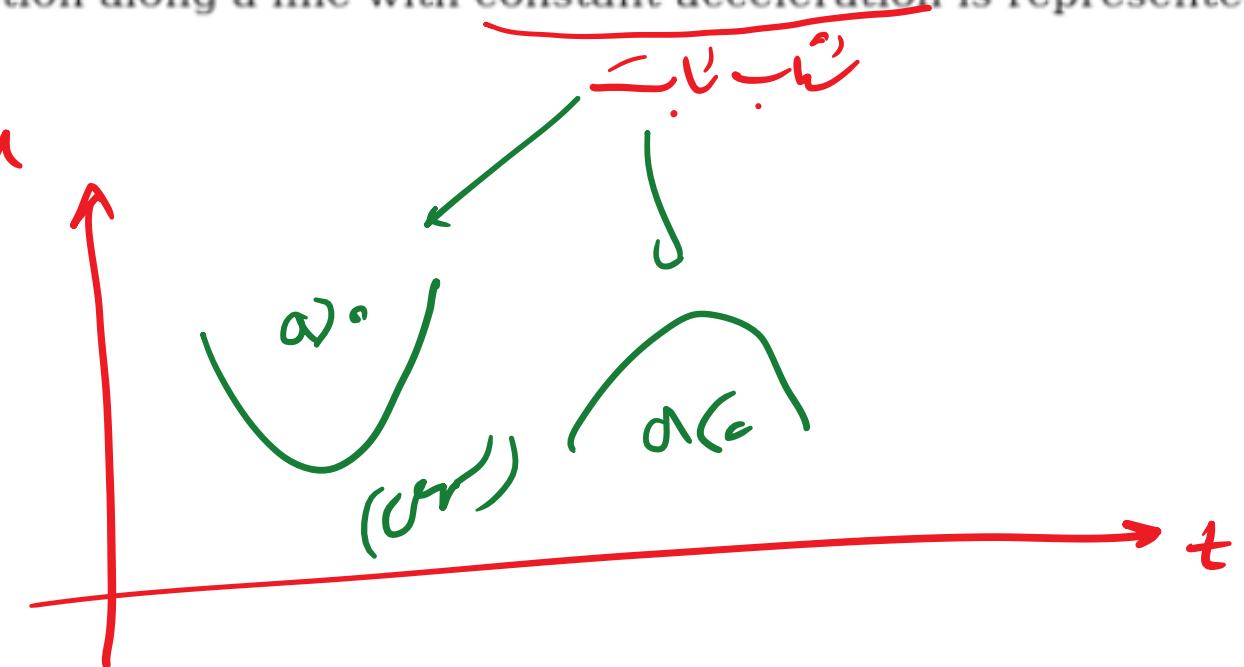
In an adiabatic process the internal energy of an ideal gas increases by $2 J$.
How much work has been done on the gas?

decrease = کم کرنا

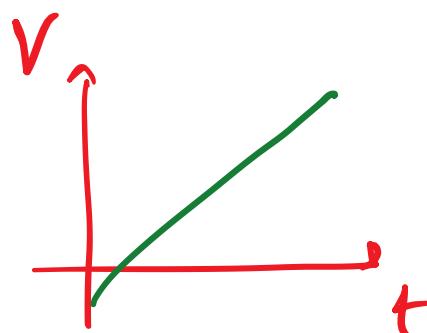
- A. It is impossible to answer without knowing how the pressure varies during the process
- B. It is impossible to answer without knowing how much heat has been exchanged
- C. $2 J$
- D. It is impossible to answer without knowing which type of gas is considered
- E. It is impossible to answer without knowing whether the process is reversible or not

$$\Delta U = Q + \omega \Rightarrow 2 = 0 + \omega \rightarrow \boxed{\omega = 2 (J)}$$

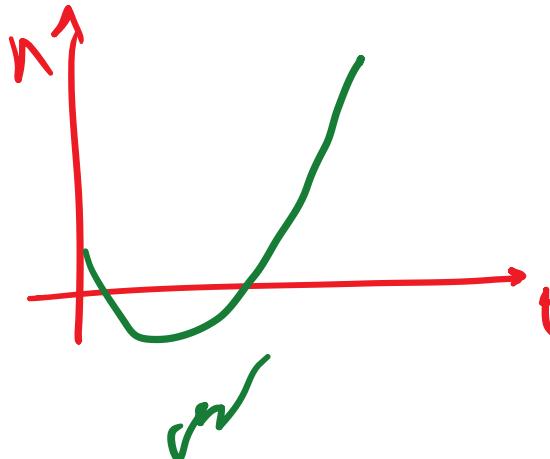
اٹریہ دانل



کم کرنا

کم کرنا


کم کرنا

On a graph of displacement versus time, motion along a line with constant acceleration is represented as


- A. a horizontal straight line
- B. a hyperbola حiperبولا
- C. an ellipse بیان
- D. a parabola پارابولا
- E. an inclined straight line لینیہ راستہ

$$a = \frac{dv}{dt}$$

$$v = \frac{dx}{dt}$$

A car with a mass of 1600kg is moving along a straight line at a constant speed of 108km h^{-1} . How many seconds it takes for the car to stop if it is subjected to a constant braking force of 4000 N ?

- A. 75
- B. 12
- C. 43
- D. 7,5
- E. 0,027

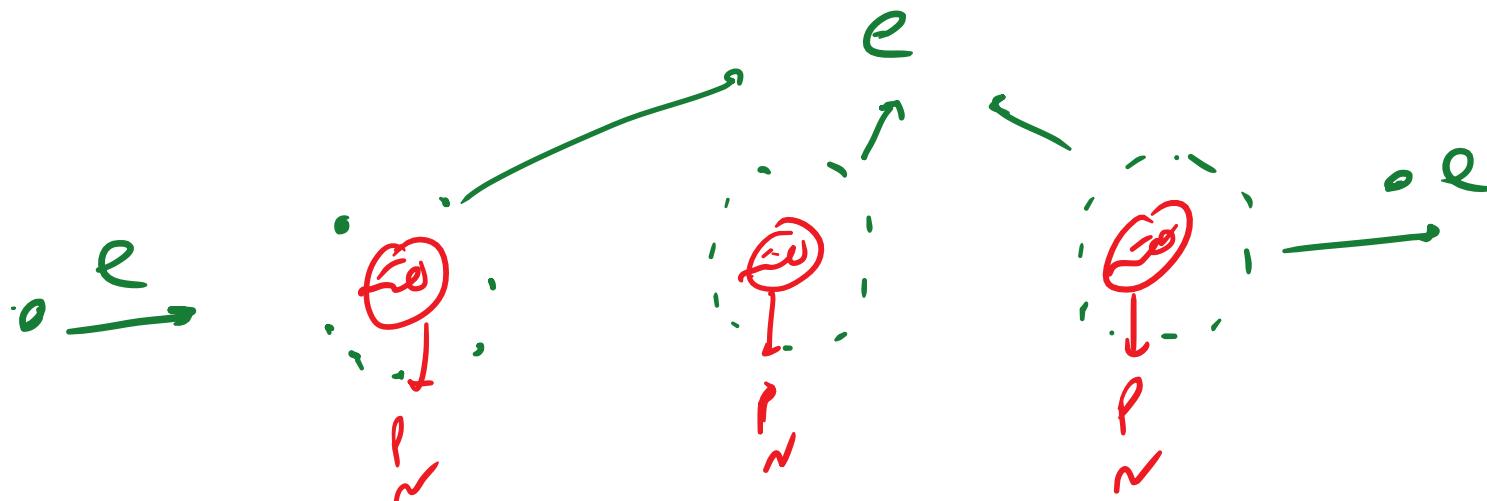
$$V = 108 \frac{\text{km}}{\text{h}} = \frac{108}{3.6} = 30 \left(\frac{\text{m}}{\text{s}}\right)$$

$$F = ma \Rightarrow 4000 = 1600a \rightarrow a = 2.5 \left(\frac{\text{m}}{\text{s}}\right)$$

کتاب

$$V = at + V_0$$

نیز جو کرے


$$0 = -2.5 \times t + 30 \rightarrow 2.5 t = 30$$

$$t = \frac{30}{2.5} = 12 \text{ (s)}$$

The current that flows in a metallic conductor is due to

فلز هارس (فذر عیسیٰ عین - جملہ اکتوبر نا (ارض بحر روم)

- A. the motion of a fluid called electricity
- B. the motion of negative charges (electrons)
- C. the propagation of electromagnetic waves
- D. the motion of positive charges (protons)
- E. the motion of negative charges (electrons) and positive charges (protons) in opposite directions

In a long-jump competition, what is the trajectory of the center of mass of an athlete, if we neglect air friction?

Wavy Parabola Hyperbola

- A. an arc of hyperbole
- B. a curve whose shape depends on the speed at the moment of detachment
- C. a curve whose shape depends on the attitude of the athlete's body during the jump
- D. an arc of parabola
- E. an arc of ellipse

The magnitude of the gravitational field at the surface of the earth is the ratio between the weight and the mass of a body. How is it measured in the International System of Units?

- A. newton · kilogram
- B. newton · metre
- C. kilogram – force · kilogram⁻²
- D. metre · second⁻²
- E. kilogram · metre · second⁻²

$$\text{is} \quad \vec{w} = m \vec{g} \rightarrow \frac{m}{s^2}$$

$$g \sim \frac{w}{m}$$

What is the angular speed, measured in rad/s, of the minute hand of a watch?

- A. $2\pi \times 60$
- B. $2\pi/60^2$
- C. $2\pi/60^3$
- D. $2\pi/60$
- E. It depends on the length of the hand

زمانیہ مولہ کے لئے تائیم $\omega = \frac{2\pi}{T}$

کے زمانیہ طبقہ کے لئے $T = 60$ سو

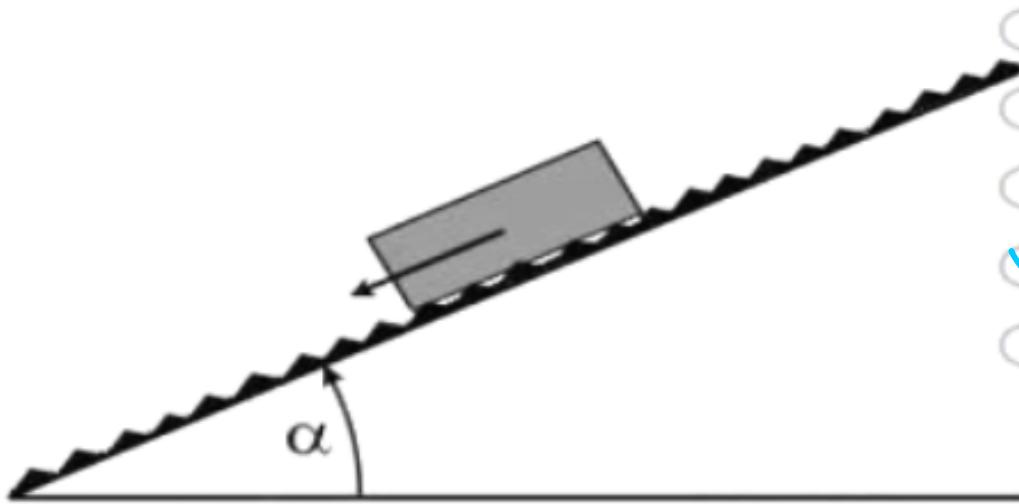
$\omega = \frac{2\pi}{60}$ ≈ 0.105 rad/s

ڈنیہ کا 1 دن کا 1 تاریخی

Boyle's law states that at any given temperature the pressure p times the volume V of an ideal gas is constant, namely we can write $pV = c$. The units of the constant c are therefore

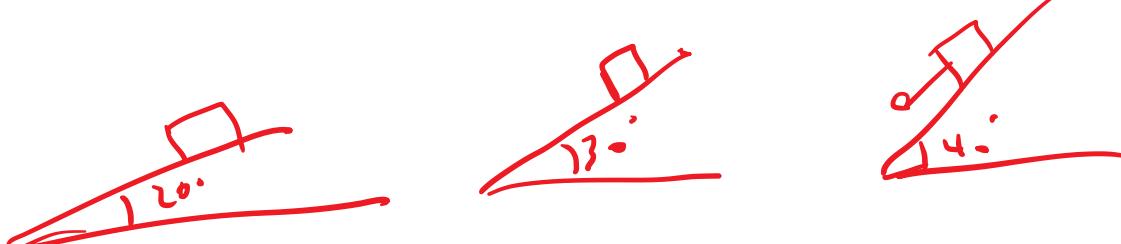
-
- A. Nm^2
- B. Nm
- C. Jm^3
- D. J m^{-3}
- E. Jm

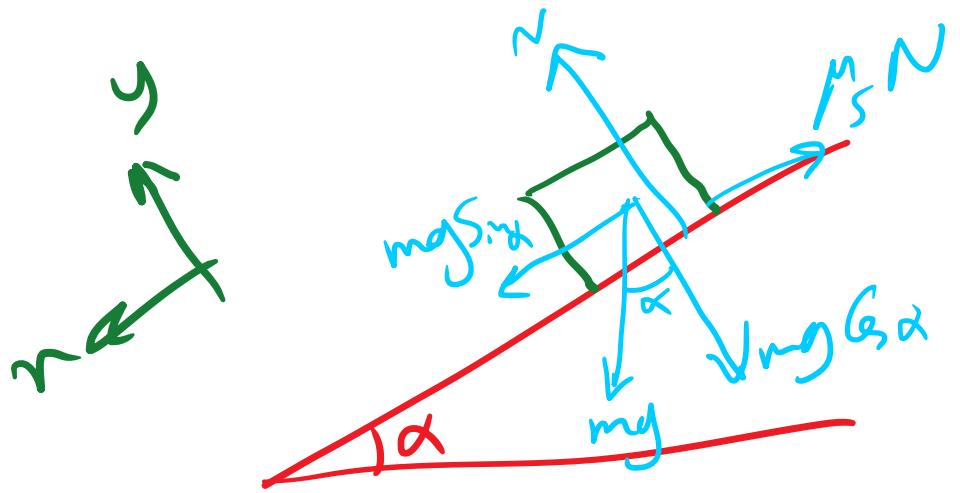
$$\begin{array}{c}
 \text{Jt. k} \quad PV \\
 \downarrow \quad \downarrow \quad \downarrow \\
 p \cdot V \quad \frac{m \cdot R \cdot T}{c} \quad \frac{m \cdot c \cdot m}{c} \rightarrow c
 \end{array} \rightarrow PV = c$$


$$\begin{array}{c}
 p \cdot \frac{f}{\frac{m}{m}} \cdot \frac{m}{m} \\
 (\frac{N}{m^2})
 \end{array}$$

$$PV = c \xrightarrow{\text{ab}} \frac{N}{m^2} \times m^3 = N \cdot m$$

مکانیک کے نظریہ


مسئلہ ۱۱


A rigid body stands motionless on a rough incline (with friction). The slope of the incline is progressively increased until the body starts moving. The angle α of the incline with the horizontal at which this happens depends on _____

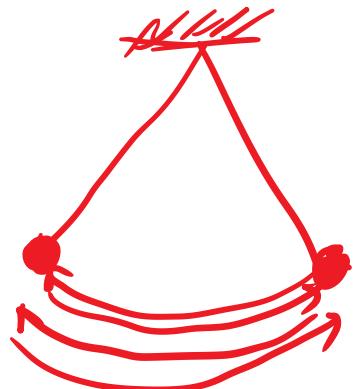
- A. the mass of the body
- B. the local value of the gravity acceleration
- C. the contact area between the body and the incline
- D. the coefficient of static friction
- E. the weight of the body

وہی مسئلہ ہے
 μ_s

$$\sum F_y = 0 \rightarrow N - mg \cos \theta = 0$$

$$N = mg \cos \theta$$

$$\sum F_x = 0 \Rightarrow mg \sin \theta - \mu_s N = 0$$


$$mg \sin \theta = \mu_s \times mg \cos \theta$$

$$\mu_s = \frac{\sin \theta}{\cos \theta} = \tan \theta$$

$$\theta = \tan^{-1}(\mu_s)$$

In the absence of friction, would a pendulum put in motion oscillate forever?

- A. No, because the kinetic energy of the pendulum is continuously changing
- B. No, because the motion of a pendulum is not uniform
- C. No, because while the pendulum oscillates its angular momentum changes
- D. Yes, because while the pendulum oscillates its momentum is conserved
- E. Yes, because while the pendulum oscillates its total mechanical energy does not change

از زیر
جی کا
کام

نے
نے