

آکادمی بینالمللی دان

تمام حقوق محفوظ است. هیچ بخشی از این کتاب نمی‌تواند بدون کسب اجازه‌ی کتبی از نویسنده یا ناشر در هر شکل و با هر وسیله‌ای، تولید، نسخه‌برداری، انتشار، فروش یا توزیع شود.

<mailto:info@daanacademy.com>

Question 1

Wrong answer

Score -25.00 out of 100.00

During a thermodynamic cycle, an ideal thermal machine absorbs heat $Q_1 > 0$ from a hot source and uses it to perform a job $L > 0$, transferring heat $Q_2 < 0$ to a cold source, with a yield of 20%. How much is the work done in relation to Q_1 worth?

- (a) $L = 0$
- (b) $L + Q_1 = 1/5$
- (c) $L = Q_1 + 1/4$ X
- (d) $L = -Q_1 1/5$
- (e) $L = -Q_1 1/4$

Wrong answer.

The correct answer is: $L = -Q_1 1/4$ **Question 2**

Correct answer

Score 100.00 out of 100.00

A copper wire has a section equal to 1.67 mm^2 and length $L = 50 \text{ cm}$. The resistivity of copper at room temperature is $1.67 \cdot 10^{-8} \Omega \cdot \text{m}$. Determine the resistance R measured at the ends.

- (a) $R = 5.6 \cdot 10^{-9} \Omega$
- (b) $R = 5.0 \cdot 10^{-5} \Omega$
- (c) $R = 5.0 \cdot 10^{-3} \Omega$
- (d) $R = 5.0 \cdot 10^{-8} \Omega$ ✓
- (e) $R = 5.6 \cdot 10^{-1} \Omega$

Correct answer.

The correct answer is: $R = 5.0 \cdot 10^{-8} \Omega$

Question 3

Wrong answer

Score -25.00 out of
100.00

An object moves in a uniformly accelerated rectilinear motion with acceleration a for a time $t = 5 \text{ s}$, covering a distance $d = 8 \text{ m}$. If its initial velocity is $v_0 = 2 \text{ m/s}$, which of the following statements is correct?

- (A) a has the same verse as v_0 , $v_f = 0$
- (B) a has opposite verse $v_0, v_f = 0$
- (C) a has opposite verse v_0 ; the final speed v_f has the same direction as v_0
- (D) a has the same direction of v_0 , v_f opposite
- (E) a and v_f have the same verse of v_0 X

The correct answer is: a has opposite verse v_0 ; the final speed v_f has the same direction as v_0

Question 4

Wrong answer

Score -25.00 out of
100.00

What is the value of the Earth's average rate?

- (to) $6.38 \cdot 10^{\frac{9}{6}} \text{ km}$
- (B) $6.38 \cdot 10^{\frac{9}{10}} \text{ km}$ X
- (C) $6.38 \cdot 10^{\frac{9}{5}} \text{ m}$
- (D) $6.38 \cdot 10^{\frac{9}{3}} \text{ km}$
- (e) $6.38 \cdot 10^{\frac{9}{3}} \text{ km}$

Wrong answer.

3

The correct answer is: $6.38 \cdot 10^{\frac{9}{3}} \text{ km}$

Question 5

Correct answer

Score 100.00 out of
100.00

The surface of a conductive sphere is uniformly charged with a charge q . The electrostatic field at a point P located outside the sphere

- (a) is inversely proportional to the square of the distance of the point P from the center of the sphere ✓
- (b) is inversely proportional to the square of the distance of the point P from the surface of the sphere
- (c) is inversely proportional to the distance of the point P from the center of the sphere
- (d) is always null
- (e) is inversely proportional to the distance of the point P from the surface of the sphere

Correct answer.

The correct answer is: it is inversely proportional to the square of the distance of the point P from the center of the sphere

Question 6

Correct answer

Score 100.00 out of
100.00

An elastic constant spring $K = 200 \text{ N/m}$ has one end fixed to the ceiling while a body of mass M is fixed to the other end. At equilibrium, the spring is elongated by $X = 25 \text{ cm}$ with respect to its rest length. What is the mass of the body? (Approximate acceleration of gravity of 10 m/s^2)

- (a) $M = 20 \text{ kg}$
- (b) $M = 50 \text{ kg}$
- (c) $M = 5 \text{ kg}$ ✓
- (d) $M = 0.5 \text{ kg}$
- (e) $M = 2 \text{ kg}$

Correct answer.

The correct answer is: $M = 5 \text{ kg}$

Question 7

Correct answer

Score 100.00 out of
100.00

A ball is thrown upwards. Which of the following statements is false?

- (a) The kinetic energy of the ball decreases as it rises.
- (b) The potential energy of the ball increases as it rises.
- (c) The kinetic energy of the ball is a function of its speed.
- (d) As the ball rises, the force of gravity does positive work on it.
- (e) As the ball rises, the force of gravity opposes the motion.

Correct answer.

The correct answer is: As the ball goes up, the force of gravity does positive work on it.

Question 8

Correct answer

Score 100.00 out of
100.00A body of mass m , subjected to the action of a force F , moves with acceleration equal to a . If, keeping the force constant, we halve the mass m , the acceleration of the system:

- (a) remains constant
- (b) nothing can be said about the acceleration of the system because it depends on the value of m
- (c) is halved
- (d) doubles
- (e) nothing can be said about the acceleration of the system because it depends on the value of F

Correct answer.

The correct answer is: double

Question 9

Wrong answer

Score -25.00 out of
100.00

A car travels at a speed of 10 m / s along a 1 km radius curve. How much is its centripetal acceleration?

- (to) 100 m/s^2
- (B) 10 m/s^2
- (C) 1 m/s^2
- (d) It is not possible to calculate it if you do not know the time taken to travel the curve
- (is) 0.1 m/s^2

Wrong answer.

The correct answer is: 0.1 m/s^2

Question 10

Correct answer

Score 100.00 out of 100.00

A copper block of mass $m_{\text{cu}} = 20 \text{ g}$ is found in the laboratory at an initial temperature t_{in} . At block there is provided a heat equal to $Q = 84 \text{ J}$ thanks to which reaches the final temperature $T_{\text{fin}} = 35^\circ \text{C}$. Knowing that the specific heat c_{cu} of the copper can be approximated to $0.1 \text{ cal/g}^\circ \text{C}$ and using the approximation $1 \text{ cal} = 4.2 \text{ J}$, determine the value of the initial temperature t_{in} .

- (a) none of the other answers are correct
- (b) 25°C ✓
- (c) 250°C
- (d) 390 K
- (e) 2.5°C

Correct answer.

The correct answer is: 25°C **Question 11**

Wrong answer

Score -25.00 out of 100.00

What is the minimum volume that a body with a mass of 1 kg must have in order not to sink when immersed in water? (water density = 10^3 kg/m^3).

- (a) none of the other answers are correct ✗
- (b) 1000 cm^3
- (c) $1 \cdot 10^3 \text{ m}^3$
- (d) 2 dm^3
- (e) 0.210 m^3

Wrong answer.

The correct answer is: $1 \cdot 10^3 \text{ m}^3$ **Question 12**

Wrong answer

Score -25.00 out of 100.00

Two arbitrary planar vectors of forms \vec{a} and \vec{b} are given. Let it be $\vec{c} = \vec{a} + \vec{b}$. The form of \vec{c} :

- (A) is always greater than $\vec{a} + \vec{b}$.
- (B) is always less than $\vec{a} + \vec{b}$.
- (C) is greater than or equal to $\vec{a} + \vec{b}$. ✗
- (D) is always equal to $\vec{a} + \vec{b}$.
- (E) is less than or equal to $\vec{a} + \vec{b}$.

The correct answer is: it is less than or equal to $\vec{a} + \vec{b}$.

Training test

Started Thursday, March 12 2020, 3:09 pm

State Completed

terminated Thursday, March 12 2020, 3:31 pm

The time spent on 21 min 50 seconds

Score 750,00 / 1200,00

Rating 7.50 out of a maximum of 12.00 (63 %)

Question 1

Wrong answer

Score -25.00 out of 100.00

According to Stevin's law, if the depth inside a liquid in static equilibrium increases

- (a) the hydrostatic pressure increases
- (b) the acceleration of gravity increases
- (c) the hydrostatic pressure decreases
- (d) the hydrostatic pressure remains unchanged X
- (e) Stevin's law does not apply to liquids in static balance

Wrong answer.

The correct answer is: hydrostatic pressure increases

Question 2

Answer not given

Max score: 100.00

If the dimensions of mass, length and time are indicated with [M], [L] and [T] respectively, the dimensions of the tangential acceleration are:

- (a) $[L] [T]$ -2
- (b) $[M]_2 [L] [T]$
- (c) $[L] [T]_{-2}$
- (d) $[L]_{-2} [T]_{-2}$
- (e) $[L] [T]$

Wrong answer.

-2

The correct answer is: $[L] [T]$

Question 3

Correct answer

Score 100.00 out of
100.00

A container with rigid and hermetically sealed walls contains a perfect gas at temperature $T_1 = 300 \text{ K}$ and pressure $p_1 = 1 \text{ Pa}$. At what pressure does the gas go if the container is cooled down to a temperature of $T_2 = 270 \text{ K}$?

- (a) 0.9 Pa ✓
- (b) 11.1 Pa
- (c) 1.11 Pa
- (d) The pressure does not vary
- (e) 0.09 Pa

Correct answer.

The correct answer is: 0.9 Pa

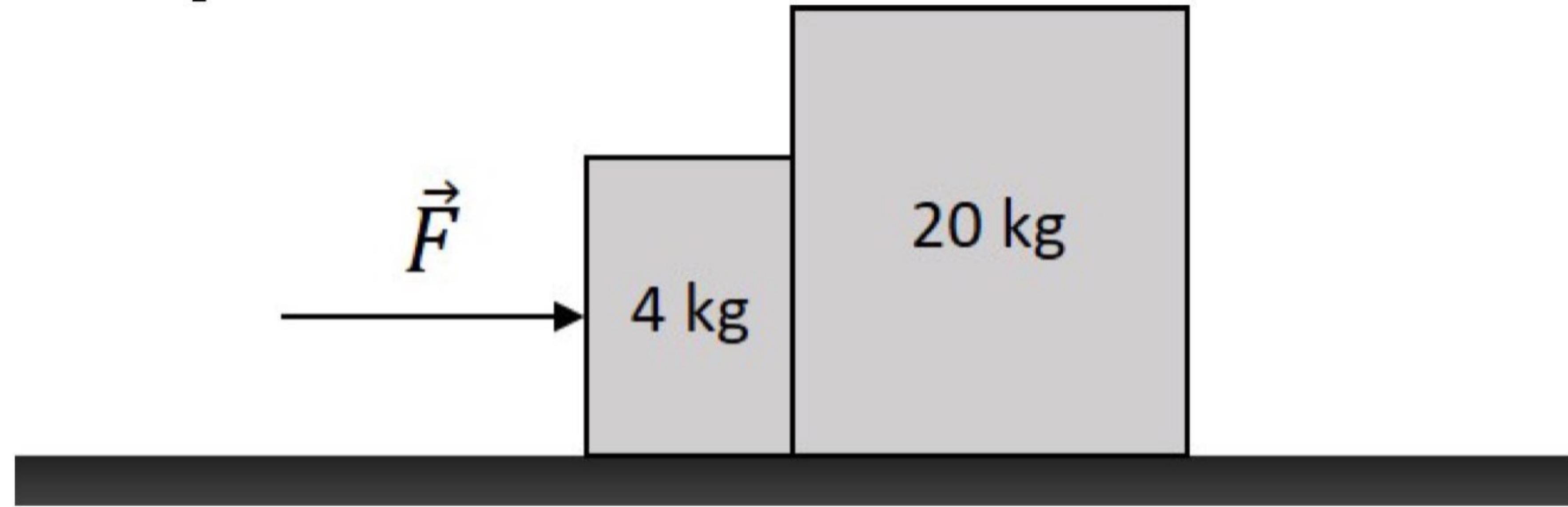
Question 4

Correct answer

Score 100.00 out of
100.00

A body moves with uniform circular motion on a circumference of radius $R = 0.2 \text{ m}$. Its speed module is $v = 2 \text{ m/s}$. How much is its angular velocity worth ω ?

- (A) 10 rad/s ✓
- (B) $2\pi \text{ rad/s}$
- (C) 1 rad/s
- (D) $4\pi \text{ rad/s}$
- (E) $0, 4 \text{ rad/s}$


The correct answer is: 10 rad/s

Question 5

Wrong answer

Score -25.00 out of 100.00

Two boxes of mass $m_1 = 4 \text{ kg}$ and $m_2 = 20 \text{ kg}$ are placed on a smooth surface. The force $F = 12 \text{ N}$ is applied to the mass m_1 (see figure). How much is the force F_{12} that the mass m_1 exerts on the mass m_2 ?

- (a) $F_{12} = 4 \text{ N}$
- (b) $F_{12} = 72 \text{ N}$
- (c) $F_{12} = 12 \text{ N}$ X
- (d) $F_{12} = 2 \text{ N}$
- (e) $F_{12} = 10 \text{ N}$

Wrong answer.

The correct answer is: $F_{12} = 10 \text{ N}$ **Question 6**

Correct answer

Score 100.00 out of 100.00

The surface of a conductive sphere is uniformly charged with a charge q . The electrostatic field at a point P located outside the sphere

- (a) is inversely proportional to the distance of the point P from the center of the sphere
- (b) is inversely proportional to the square of the distance of point P from the center of the sphere ✓
- (c) is always null
- (d) is inversely proportional to the square of the distance of point P from the surface of the sphere
- (e) is inversely proportional to the distance of the point P from the surface of the sphere

Correct answer.

The correct answer is: it is inversely proportional to the square of the distance of the point P from the center of the sphere

Question 7

Correct answer

Score 100.00 out of 100.00

Two arbitrary \vec{a} and \vec{b} planar vectors of forms \vec{a} and are given \vec{b} . Let it be $\vec{c} = \vec{a} + \vec{b}$. The form of \vec{c} :

- (A) is always equal to $\vec{a} + \vec{b}$.
- (B) is less than or equal to $\vec{a} + \vec{b}$.
- (C) is always less than $\vec{a} + \vec{b}$.
- (D) is greater than or equal to $\vec{a} + \vec{b}$.
- (E) is always greater than $\vec{a} + \vec{b}$.

The correct answer is: it is less than or equal to $\vec{a} + \vec{b}$.

Question 8

Correct answer

Score 100.00 out of 100.00

After exercising, a cyclist lost 460 kcal of heat from evaporation of water from the skin. Approximating the latent heat of evaporation of the water to J / kg and knowing that $1\text{kcal} = 4180\text{ J}$, how much water is lost $2,3 \times 10^6$?

- (a) 83.6 g
- (b) 83.6 kg
- (c) 8.36 kg
- (d) 836 g
- (e) 8.36 g

Correct answer.

The correct answer is: 836 g

Question 9

Correct answer

Score 100.00 out of 100.00

A car moves in a straight direction, starting from a standstill, with constant acceleration equal to $10\text{m} / \text{s}^2$. What will be your speed after covering 45m?

- (a) $40\text{m} / \text{s}$
- (b) $5\text{m} / \text{s}$
- (c) $20\text{m} / \text{s}$
- (d) $50\text{m} / \text{s}$
- (e) $30\text{m} / \text{s}$

Correct answer.

The correct answer is: $30\text{m} / \text{s}$

Question 10

Correct answer

Score 100.00 out of
100.00

A ball is thrown upwards. Which of the following statements is false?

- (a) As the ball rises, the force of gravity opposes the motion.
- (b) The potential energy of the ball increases as it rises.
- (c) As the ball rises, the force of gravity does positive work on it.
- (d) The kinetic energy of the ball is a function of its speed.
- (e) The kinetic energy of the ball decreases as it rises.

Correct answer.

The correct answer is: As the ball goes up, the force of gravity does positive work on it.

Question 11

Correct answer

Score 100.00 out of
100.00A trolley of mass $M = 25 \text{ kg}$ is moved along a horizontal plane without friction with an acceleration parallel to the plane of 8 m/s^2 . What is the value of the force that is applied to the trolley, knowing that it forms a 60° angle with the plane?

- (a) $F = 2000 \text{ N}$
- (b) $F = 200 \text{ N}$
- (c) $F = 4000 \text{ N}$
- (d) $F = 40 \text{ N}$
- (e) $F = 400 \text{ N}$

Correct answer.

The correct answer is: $F = 400 \text{ N}$ **Question 12**

Answer not given

Max score: 100.00

Calculate the value of the current intensity I flowing in a conductor where the drift velocity of the charge carriers (electrons) is $v_d = 2 \cdot 10^2 \text{ m/s}$ and the circular section is $S = 5 \text{ mm}^2$. [Assume that the density of carriers is equal to $5 \cdot 10^{16} \text{ m}^{-3}$].

- (a) $I = 0.8 \text{ A}$
- (b) $I = 0.08 \text{ A}$
- (c) $I = 2 \text{ A}$
- (d) $I = 8 \text{ A}$
- (e) $I = 16 \text{ A}$

Wrong answer.

The correct answer is: $I = 8 \text{ A}$

Training test

Started Sunday, March 15 2020, 5:10 pm
State Completed
terminated Sunday, March 15 2020, 5:35 pm
The time spent on 25 min 11 seconds
Score 575,00 / 1200,00
Rating 5.75 out of a maximum of 12.00 (48 %)

Question 1

Correct answer
Score 100.00 out of 100.00

An object moves in a uniformly accelerated rectilinear motion with acceleration \vec{a} for a time $t = 5 \text{ s}$, covering a distance $d = 8 \text{ m}$. If its initial velocity is $v_0 = 2 \text{ m/s}$, which of the following statements is correct?

- (A) \vec{a} has the same verse as v_0 , $v_f = 0$
- (B) \vec{a} has the same direction of v_0 , v_f opposite
- (C) \vec{a} has opposite verse v_0 , $v_f = 0$
- (D) \vec{a} has opposite verse v_0 ; the final speed v_f has the same direction as v_0 ✓
- (E) \vec{a} and v_f have the same verse of v_0

The correct answer is: \vec{a} has opposite verse v_0 ; the final speed v_f has the same direction as v_0

Question 2

Correct answer
Score 100.00 out of 100.00

2 vectors are given and in the plane, of modules $|\vec{a}| = 5$ and $|\vec{b}| = 5$. How much is the modulus of their vector difference $= -$ knowing that the angle between the vectors and $\vec{a} \vec{b} \vec{a} \vec{b}$ is it 60° ?

- (a) none of the other answers are correct
- (b) 15
- (c) 50
- (d) 5 ✓
- (e) 25

Correct answer.

The correct answer is: 5

Question 3

Correct answer

Score 100.00 out of 100.00

A centrifuge used to train astronauts rotates at a constant angular speed of 2 rad / s. Internally, the staff in training bears a centripetal acceleration equal to 4 times that due to gravity. How long is the centrifuge arm? Consider $g = 10 \text{ m / s}^2$

- (a) 10 m ✓
- (b) 2.5 m
- (c) It cannot be calculated if the mass of the centrifuge is unknown
- (d) 1 m
- (e) 20 m

Correct answer.

The correct answer is: 10 m

Question 4

Wrong answer

Score -25.00 out of 100.00

The elastic forces of two springs, elongated by x_1 and x_2 respectively, have the same intensity. If $\frac{x_1}{x_2} = \frac{2}{3}$, how much is the ratio $\frac{k_1}{k_2}$ of elastic constants?

- (A) 1/2
- (B) 2/3 ✗
- (C) 1/4
- (D) 3/2
- (E) 4/3

The correct answer is: 3/2

Question 5

Correct answer

Score 100.00 out of 100.00

Two tungsten wires have the same mass. Wire A is as long as wire B. Their resistances, R_A and R_B , are linked by

- (a) $R_A = 2R_B$
- (b) $R_A = R_B$ ✓
- (c) $R_A = 10R_B$
- (d) $R_B = 10R_A$
- (e) $R_B = 2R_A$

Correct answer.

The correct answer is: $R_A = R_B$

Question 6

Correct answer

Score 100.00 out of 100.00

The efficiency of a thermal machine that completes a Carnot cycle is equal to 0.8. Knowing that it absorbs heat from a hot source that is at the temperature $T_c = 1000$ K, at what temperature T_F is a cold source?

- (a) 360 K
- (b) 200 K ✓
- (c) 400 K
- (d) 250 K
- (e) 800 K

Correct answer.

The correct answer is: 200K

Question 7

Correct answer

Score 100.00 out of 100.00

A copper block of mass $m_{cu} = 20$ g is found in the laboratory at an initial temperature t_{in} . At block there is provided a heat equal to $Q = 84$ J thanks to which reaches the final temperature $T_{fin} = 35$ °C. Knowing that the specific heat c_{cu} of the copper can be approximated to 0.1 cal / g °C and using the approximation 1 cal = 4.2 J, determine the value of the initial temperature t_{in} .

- (a) 390 K
- (b) none of the other answers are correct
- (c) 25 °C ✓
- (d) 2.5 °C
- (e) 250 °C

Correct answer.

The correct answer is: 25 °C

Question 8

Correct answer

Score 100.00 out of 100.00

A mass body m slides along a smooth plane inclined at an angle θ from the horizontal. What can be said about its acceleration?

- (A) which is parallel to the plane and is valid in module $g \cos \theta$
- (B) which is parallel to the plane and is valid in module g
- (C) which is parallel to the plane and is valid in module $g \sin \theta$ ✓
- (D) which is vertical, directed downwards and has modulus $g = 9.8 \text{ m/s}^2$
- (E) which has a component parallel to the plane and one perpendicular to the plane

The correct answer is: that it is parallel to the plane and is valid in form $g \sin \theta$

Question 9

Wrong answer

Score -25.00 out of 100.00

In the International System, a vector quantity is measured in $\text{kg m}^2/\text{s}^2$. What size could it be?

- (A) Entropy
- (B) Momentum X
- (C) Moment of momentum
- (D) Impulse of a force
- (E) Moment of a force

The correct answer is: Moment of a force

Question 10

Wrong answer

Score -25.00 out of 100.00

A liquid in stationary motion flows in a horizontal tube. If at a certain point in the tube its diameter increases, what effects can be observed on the flow of liquid?

- (a) In the absence of sufficient information on the pressure value, it is not possible to answer
- (b) In the section of pipe with a larger diameter, the speed of the liquid decreases and the flow rate remains constant
- (c) In the section of pipe with a larger diameter, the speed of the liquid increases and the flow rate remains constant
- (d) In the section of pipe with a larger diameter, the flow rate and speed of the liquid remain unchanged
- (e) In the section of pipe with a larger diameter, the flow rate decreases and the speed of the liquid increases X

Wrong answer.

The correct answer is: In the section of pipe with a larger diameter, the speed of the liquid decreases and the flow rate remains constant

Question 11

Wrong answer

Score -25.00 out of
100.00

A spherical surface contains three charges $q_1 = 4q$, $q_2 = 5q$, $q_3 = -7q$. A fourth charge $q_4 = -5q$ is placed outside the sphere.¹ How much is the flow of the electric field through the spherical surface worth? Let ϵ_0 the dielectric constant of the vacuum.

- (a) $16q / \epsilon_0$
- (b) $2q / \epsilon_0$
- (c) $-3q / \epsilon_0$
- (d) is null
- (e) it cannot be determined because the exact position of the charges within the spherical surface is unknown X

Wrong answer.

The correct answer is: $2q / \epsilon_0$ **Question 12**

Wrong answer

Score -25.00 out of
100.00

To a point body of mass $m = 1 \text{ kg}$, in motion with speed $v = 20 \text{ m / s}$, a force is applied which decreases its speed up to 10 m / s . If no other forces act on the body, it can be said that:

- (a) the work of force is nil.
- (b) None of the other answers are correct X
- (c) Nothing can be said without knowing how long the force acts.
- (d) the work of the force is equal to -150 J .
- (e) the work of the force is equal to 150 J .

Wrong answer.

The correct answer is: the work of strength is equal to -150 J .

Training test

Started Monday, March 16 2020, 10:18

State Completed

terminated Monday, March 16 2020, 10:43 am

The time spent on 24 mins 36 seconds

Score 750,00 / 1200,00

Rating 7.50 out of a maximum of 12.00 (63 %)

Question 1

Wrong answer

Score -25.00 out of 100.00

Two vectors lying on the Cartesian plane (y, z), have the same module equal to 4 units. The first forms an angle equal to 25° with the y axis and the second forms an angle equal to 45° with the direction of the first vector. How much are the scalar and vector product of the first vector for the second? (indicate with \hat{i} , \hat{j} and \hat{k} the versors of the x, y and z axis, respectively)

- (a) scale = 0; vector = $16\hat{k}$ X
- (b) scale = 4 ; vector = $16\hat{j}$
- (c) scale = 16; vector = $-16\hat{j}$
- (d) scale = 0 ; vector = 0
- (e) scalar = $8\sqrt{2}$; vector = $8\sqrt{2}\hat{i}$

Wrong answer.

The correct answer is: scalar = $8\sqrt{2}$; vector = $8\sqrt{2}\hat{i}$

Question 2

Correct answer

Score 100.00 out of
100.00

During a thermodynamic cycle, an ideal thermal machine absorbs heat $Q_1 > 0$ from a hot source and uses it to perform a job $L > 0$, transferring heat $Q_2 < 0$ to a cold source, with a yield of 20%. How much is the work done in relation to Q_1 worth?

- (a) $L = Q_1 + Q_2 / 5$
- (b) $L = Q_1 + Q_2 / 4$
- (c) $L = 0$
- (d) $L = -Q_1 / 5$
- (e) $L = -Q_1 / 4$ ✓

Correct answer.

The correct answer is: $L = -Q_1 / 4$ **Question 3**

Correct answer

Score 100.00 out of
100.00

-6 -3
A point charge $q = 3 \cdot 10^{-10}$ C, having a mass of $4 \cdot 10^{-11}$ kg, placed in a uniform electric field is subject to an acceleration equal in modulus to $6 \cdot 10^{-6}$ m / s². How much is the electric field module worth?

- (a) 0.125 V/m
- (b) $7.2 \cdot 10^{-11} \text{ V/m}$
- (c) 8.0 V/m ✓
- (d) $2.0 \cdot 10^{-6} \text{ V/m}$
- (e) $4.5 \cdot 10^{-6} \text{ V/m}$

Correct answer.

The correct answer is: 8.0 V/m **Question 4**

Correct answer

Score 100.00 out of
100.00

The specific heat of a body is defined by the relationship $c = Q / (m \Delta T)$ where Q the heat exchanged by the body is, m the mass of the body and ΔT its variation in temperature. What is the specific heat unit of measurement in the International System?

- (TO) cal/(g K)
- (B) J/(g °C)
- (C) cal/(g °C)
- (D) J/(kg K) ✓
- (IS) J/(g K)

The correct answer is: $J/(kg K)$

Question 5

Wrong answer

Score -25.00 out of 100.00

A mass bucket M is lowered from above using a rope subjected to a module tension T . The acceleration of the bucket has modulus a and is turned downwards. Which of the following relationships is correct?

- (TO) $Mg + T + Ma = 0$
- (B) $T = M(g + a)$
- (C) $T = -M(g + a)$
- (D) $T = M(g - a)$
- (IS) $T = -M(g - a)$

The correct answer is: $T = M(g - a)$

Question 6

Correct answer

Score 100.00 out of 100.00

After exercising, a cyclist lost 460 kcal of heat from evaporation of water from the skin. Approximating the latent heat of evaporation of the water to J / kg and knowing that $1\text{kcal} = 4180 \text{ J}$, how much water is lost $2,3 \times 10^6$?

- (a) 836 g
- (b) 8.36 kg
- (c) 83.6 kg
- (d) 83.6 g
- (e) 8.36 g

Correct answer.

The correct answer is: 836 g

Question 7

Answer not given

Max score: 100.00

Archimedes' thrust on a body completely immersed in a fluid only depends

- (a) the depth at which the body is located and the volume of fluid moved
- (b) from the depth at which the body is located and from its mass
- (c) the acceleration of gravity and the depth at which the body is located
- (d) the weight of the body and the density of the fluid
- (e) the volume of the body and the density of the fluid

Wrong answer.

The correct answer is: from the volume of the body and the density of the fluid

Question 8

Correct answer

Score 100.00 out of
100.00

A centrifuge used to train astronauts rotates at a constant angular speed of 2 rad/s . Internally, the staff in training bears a centripetal acceleration equal to 4 times that due to gravity. How long is the centrifuge arm? Consider $g = 10 \text{ m/s}^2$

- (a) 2.5 m
- (b) 10 m ✓
- (c) 1 m
- (d) It cannot be calculated if the mass of the centrifuge is unknown
- (e) 20 m

Correct answer.

The correct answer is: 10 m

Question 9

Correct answer

Score 100.00 out of
100.00

Two resistors R_1 and R_2 are connected in series. R_1 is the half of R_2 and a difference in potential is applied to the heads of the series V . Which of the following statements is wrong?

- (A) the equivalent resistance of the series is triple of R_1
- (B) a current flows in the series $V/(3R_1)$
- (C) a power is dissipated in the series $V^2/(3R_1)$
- (D) the potential difference across the leads R_1 is double the potential difference across the leads R_2 ✓
- (E) the same current flows in both resistances

The correct answer is: the potential difference across heads R_1 is double the potential difference across heads R_2

Question 10

Answer not given

Max score: 100.00

A motor with a maximum power of $9 \cdot 10^4 \text{ W}$ is used to operate a freight elevator that weighs $1.5 \cdot 10^4 \text{ N}$ when empty. What is the maximum weight of the load placed in the hoist that this motor can lift at an average speed of 3 m/s ?

- (a) $7.5 \cdot 10^4 \text{ N}$
- (b) There is not enough data to respond.
- (c) $1.5 \cdot 10^4 \text{ N}$
- (d) None of the other answers are correct
- (e) $4.5 \cdot 10^4 \text{ N}$

Wrong answer.

The correct answer is: $1.5 \cdot 10^4 \text{ N}$

Question 11

Correct answer

Score 100.00 out of
100.00

A trolley of mass $M = 25 \text{ kg}$ is moved along a horizontal plane without friction with an acceleration parallel to the plane of 8 m/s^2 . What is the value of the force that is applied to the trolley, knowing that it forms a 60° angle with the plane?

- (a) $F = 200 \text{ N}$
- (b) $F = 400 \text{ N}$ ✓
- (c) $F = 40 \text{ N}$
- (d) $F = 2000 \text{ N}$
- (e) $F = 4000 \text{ N}$

Correct answer.

The correct answer is: $F = 400 \text{ N}$

Question 12

Correct answer

Score 100.00 out of
100.00

A body initially stationary in the origin of the x axis is subjected to a constant acceleration equal to 2 m/s^2 for a time interval equal to 10 s . At the end of this interval, the previous acceleration is replaced by another, of opposite direction and of module equal to 1 m/s^2 . How long does it take to return to the origin?

- (A) does not return to the origin because the acceleration in the second part is lower in modulus than that of the first
- (B) it is not possible to answer the question with the data provided
- (C) less than 20 s after its departure from the origin
- (D) after exactly 20 s from its departure from the origin
- (E) after more than 20 s from its departure from the origin ✓

The correct answer is: after more than 20 s from its departure from the origin

Training test

Started Wednesday, March 18 2020, 2:01 pm

State Completed

terminated Wednesday, March 18 2020, 2:17 pm

The time spent on 16 min 13 seconds

Score 1075.00 / 1200.00

Rating 10.75 out of a maximum of 12.00 (90 %)

Question 1

Correct answer

Score 100.00 out of 100.00

A car travels at a speed of 10 m / s along a 1 km radius curve. How much is its centripetal acceleration?

- (A) 100 m/s²
- (B) 1 m/s²
- (C) 10 m/s²
- (D) 0.1 m/s² ✓
- (E) It is not possible to calculate it if you do not know the time taken to travel the curve

Correct answer.

The correct answer is: 0.1 m/s²

Question 2

Correct answer

Score 100.00 out of 100.00

Two arbitrary \vec{a} and \vec{b} planar vectors of forms a and are given b . Let it be $\vec{c} = \vec{a} + \vec{b}$. The form of \vec{c} :

- (A) is less than or equal to $a + b$. ✓
- (B) is always less than $a + b$.
- (C) is always greater than $a + b$.
- (D) is always equal to $a + b$.
- (E) is greater than or equal to $a + b$.

The correct answer is: it is less than or equal to $a + b$.

Question 3

Correct answer

Score 100.00 out of
100.00

-6

-3

A point charge $q = 3 \cdot 10^{-6}$ C, having a mass of $4 \cdot 10^{-6}$ kg, placed in a uniform electric field is subject to an acceleration equal in modulus to $6 \cdot 10^{-3}$ m / s². How much is the electric field module worth?

-11

- (a) $7.2 \cdot 10^{-6}$ V / m
- (b) $4.5 \cdot 10^{-6}$ V / m
- (c) $2.0 \cdot 10^{-6}$ V / m
- (d) 8.0 V / m ✓
- (e) 0.125 V / m

Correct answer.

The correct answer is: 8.0 V / m

Question 4

Correct answer

Score 100.00 out of
100.00

A block of wood resting on a horizontal plane is launched along a straight path with an initial speed of 6m / s, stopping after 10s. How much space did it travel, if its acceleration is constant?

- (a) 20m
- (b) 50m
- (c) a null space
- (d) 30m ✓
- (e) 15m

Correct answer.

The correct answer is: 30m

Question 5

Wrong answer

Score -25.00 out of
100.00

Which of the following units of measurement relating to the electrical field is a fundamental unit of the International System of Units?

- (to) Coulomb
- (B) Ampere
- (C) Farad
- (D) Ohm
- (is) Volt X

Wrong answer.

The correct answer is: Ampere

Question 6

Correct answer

Score 100.00 out of
100.00

The elastic forces of two springs, elongated by x_1 and x_2 respectively, have the same intensity. If $\frac{x_1}{x_2} = \frac{2}{3}$, how much is the ratio $\frac{k_1}{k_2}$ of elastic constants?

- (A) 1/4
- (B) 3/2 ✓
- (C) 1/2
- (D) 2/3
- (E) 4/3

The correct answer is: 3/2

Question 7

Correct answer

Score 100.00 out of
100.00

3 3

On the bottom of a swimming pool filled with water (density equal to 10^3 kg/m^3) the pressure is equal to 150 000 Pa. Knowing that the atmospheric pressure is 10^5 Pa and assuming the acceleration of gravity equal to 10 m/s^2 , determine the depth h of the swimming pool

- (a) about 10 m
- (b) about 5 m ✓
- (c) about 0.5 m
- (d) about 3 m
- (e) can not be calculated with the data provided

Correct answer.

The correct answer is: about 5 m

Question 8

Correct answer

Score 100.00 out of 100.00

Two resistors R_1 and R_2 are connected in series. R_1 is the half of R_2 and a difference in potential is applied to the heads of the series V . Which of the following statements is wrong?

- (A) the equivalent resistance of the series is triple of R_1
- (B) the potential difference across the leads R_1 is double the potential difference across the leads R_2 ✓
- (C) a current flows in the series $V/(3R_1)$
- (D) a power is dissipated in the series $V^2/(3R_1)$
- (E) the same current flows in both resistances

The correct answer is: the potential difference across heads R_1 is double the potential difference across heads R_2

Question 9

Correct answer

Score 100.00 out of 100.00

A container with rigid and hermetically sealed walls contains a perfect gas at temperature $T_1 = 300$ K and pressure $p_1 = 1$ Pa. At what pressure does the gas go if the container is cooled down to a temperature of $T_2 = 270$ K?

- (a) 11.1 Pa
- (b) 0.9 Pa ✓
- (c) 1.11 Pa
- (d) The pressure does not vary
- (e) 0.09 Pa

Correct answer.

The correct answer is: 0.9 Pa

Question 10

Correct answer

Score 100.00 out of
100.00

By supplying a power equal to 250 W for 4 minutes using a heater, 200 g of water are brought to a boil at an altitude close to sea level . In the absence of heat loss and by approximating the specific heat of the water to 4 J / (g ° C), how much is the initial water temperature worth?

- (a) about 305 K.
- (b) 75 ° C
- (c) 20 ° C
- (d) about 350 K
- (e) 25 ° C ✓

Correct answer.

The correct answer is: 25 ° C

Question 11

Correct answer

Score 100.00 out of
100.00

Complete the following statement: a joule is the work done by a force equal to a newton when its point of application

- (a) moves one meter in a direction perpendicular to that of force.
- (b) moves along any path, provided it is closed and of a length of one meter.
- (c) None of the other answers are correct.
- (d) does not move.
- (e) moves one meter in the direction and direction of the force. ✓

Correct answer.


The correct answer is: it moves one meter in the direction and direction of the force.

Question 12

Correct answer

Score 100.00 out of
100.00

Two boxes of mass $m_1 = 4 \text{ kg}$ and $m_2 = 20 \text{ kg}$ are placed on a smooth surface. The force $F = 12 \text{ N}$ is applied to the mass m_1 (see figure). How much is the force F_{12} that the mass m_1 exerts on the mass m_2 ?

- (a) $F_{12} = 12 \text{ N}$
- (b) $F_{12} = 72 \text{ N}$
- (c) $F_{12} = 2 \text{ N}$
- (d) $F_{12} = 10 \text{ N}$ ✓
- (e) $F_{12} = 4 \text{ N}$

Correct answer.

The correct answer is: $F_{12} = 10 \text{ N}$

Training test

Started Thursday, March 19 2020, 1:29 pm

State Completed

terminated Thursday, March 19 2020, 1:50 PM

The time spent on 21 min 9 seconds

Score 850,00 / 1200,00

Rating 8.50 out of a maximum of 12.00 (71 %)

Question 1

Correct answer

Score 100.00 out of 100.00

Two point masses m_A and $m_B = 2m_A$ resting on a horizontal smooth plane are each connected to a spring disposed horizontally, whose other end, is kept fixed. The two bodies swing on the plane. The springs both have elastic constant K . With the same deformation of the springs, what relationship is there between the acceleration modules of the two bodies?

- (A) It cannot be answered because the initial velocities of the two bodies are unknown
- (B) $a_B = 2a_A$
- (C) $a_A = 2a_B$ ✓
- (D) $a_A = a_B$
- (IS) $a_A = 2/Ka_B$

The correct answer is: $a_A = 2a_B$

Question 2

Wrong answer

Score -25.00 out of 100.00

A mass $m = 1$ kg of water at 0°C and an equal mass of ice also at 0°C are placed in a container with perfectly insulating walls which is immediately sealed. If you reopen it after 1 hour, what can you find?

- (A) a certain mass of ice has melted so there is more than 1 kg of water and less than 1 kg of ice ✗
- (B) cannot be answered, because the answer depends on the outside temperature which is not known
- (C) that the ice has completely melted and therefore there are 2 kg of water at 0°C
- (D) that the water has solidified and therefore there are 2 kg of ice
- (E) that nothing has changed: there is always 1 kg of water and 1 kg of ice

The correct answer is: that nothing has changed: there is always 1 kg of water and 1 kg of ice

Question 3

Correct answer

Score 100.00 out of 100.00

A mass body $m = 2\text{kg}$ is supported on a smooth horizontal plane and pulled horizontally to the right by a spring, of constant elasticity $k = 100\text{N/m}$, stretched by a stretch $x = 5\text{cm}$ with respect to its own length. How much is the acceleration of the body worth?

- (TO) 4m/s^2
- (B) 0.25m/s^2
- (C) 2.5m/s^2
- (D) 25m/s^2
- (IS) 40m/s^2

The correct answer is: 2.5m/s^2

Question 4

Correct answer

Score 100.00 out of 100.00

If a car is subject to a purely centripetal acceleration equal to 0.1m/s^2 while driving on a circular track of radius $R = 1\text{km}$, what value does the speedometer indicate?

- (TO) 100 m/s
- (B) 10 m/s
- (C) 36 m/s
- (D) 100 km/h
- (E) the speedometer shows increasing speeds, since the motion is accelerated

The correct answer is: 10 m/s

Question 5

Correct answer

Score 100.00 out of 100.00

In the electrical field, which of these relationships regarding the "volt" unit of measure is correct?

- (to) $1\text{ volt} = 1\text{ o}\eta\mu \cdot \text{ampere}$
- (B) $1\text{ volt} = 1\text{ coulomb} \cdot \text{farad}$
- (C) $1\text{ volt} = 1\text{ farad} / \text{coulomb}$
- (D) $1\text{ volt} = 1\text{ o}\eta\mu / \text{ampere}$
- (IS) $1\text{ volt} = 1\text{ ampere} / \text{o}\eta\mu$

Correct answer.

The correct answer is: $1\text{ volt} = 1\text{ o}\eta\mu \cdot \text{ampere}$

Question 6

Correct answer

Score 100.00 out of
100.00

During a thermodynamic cycle, an ideal thermal machine absorbs heat $Q_1 > 0$ from a hot source and uses it to perform a job $L > 0$, transferring heat $Q_2 < 0$ to a cold source, with a yield of 20%. How much is the work done in relation to Q_1 worth?

- (a) $L = Q_1 + Q_2 / 5$
- (b) $L = -Q_1 - Q_2 / 5$
- (c) $L = 0$
- (d) $L = -Q_1 / 4$ ✓
- (e) $L = Q_1 + Q_2 / 4$

Correct answer.

The correct answer is: $L = -Q_1 / 4$ **Question 7**

Correct answer

Score 100.00 out of
100.00

An object moves in a uniformly accelerated rectilinear motion with acceleration a for a time $t = 5 \text{ s}$, covering a distance $d = 8 \text{ m}$. If its initial velocity is $v_0 = 2 \text{ m/s}$, which of the following statements is correct?

- (A) a and v_f have the same verse as v_0
- (B) a has the same direction of v_0 , v_f opposite
- (C) a has opposite verse v_0 , $v_f = 0$
- (D) a has the same verse as v_0 , $v_f = 0$
- (E) a has opposite verse v_0 ; the final speed v_f has the same direction as v_0 ✓

The correct answer is: a has opposite verse v_0 ; the final speed v_f has the same direction as v_0 **Question 8**

Answer not given

Max score: 100.00

Calculate the value of the current intensity I flowing in a conductor where the drift velocity of the charge carriers (electrons) is $v_d = 2 \cdot 10^3 \text{ m/s}$ and the circular section is $S = 5 \text{ mm}^2$. [Assume that the density of carriers is equal to $5 \cdot 10^{28} \text{ m}^{-3}$].

- (a) $I = 8 \text{ A}$
- (b) $I = 16 \text{ A}$
- (c) $I = 0.08 \text{ A}$
- (d) $I = 2 \text{ A}$
- (e) $I = 0.8 \text{ A}$

Wrong answer.

The correct answer is: $I = 8 \text{ A}$

Question 9

Wrong answer

Score 25.00 out of

100.00

The surface of a conductive sphere is uniformly charged with a charge q . The electrostatic field at a point P located outside the sphere

- (a) is inversely proportional to the distance of the point P from the surface of the sphere
- (b) is inversely proportional to the distance of the point P from the center of the sphere
- (c) is inversely proportional to the square of the distance of the point P from the surface of the sphere X
- (d) is inversely proportional to the square of the distance of the point P from the center of the sphere
- (e) is always null

Wrong answer.

The correct answer is: it is inversely proportional to the square of the distance of the point P from the center of the sphere

Question 10

Correct answer

Score 100.00 out of

100.00

A ball is thrown upwards. Which of the following statements is false?

- (a) As the ball rises, the force of gravity opposes the motion.
- (b) As the ball rises, the force of gravity does positive work on it. ✓
- (c) The potential energy of the ball increases as it rises.
- (d) The kinetic energy of the ball decreases as it rises.
- (e) The kinetic energy of the ball is a function of its speed.

Correct answer.

The correct answer is: As the ball goes up, the force of gravity does positive work on it.

Question 11

Correct answer

Score 100.00 out of

100.00

According to Stevin's law, if the depth inside a liquid in static equilibrium increases

- (a) Stevin's law does not apply to liquids in static balance
- (b) the acceleration of gravity increases
- (c) the hydrostatic pressure decreases
- (d) the hydrostatic pressure remains unchanged
- (e) the hydrostatic pressure increases ✓

Correct answer.

The correct answer is: hydrostatic pressure increases

Question 12

Correct answer

Score 100.00 out of
100.00

Two vectors lying on the Cartesian plane (y, z), have the same module equal to 4 units. The first forms an angle equal to 25° with the y axis and the second forms an angle equal to 45° with the direction of the first vector. How much are the scalar and vector product of the first vector for the second? (indicate with \hat{i} , \hat{j} and \hat{k} the versors of the x, y and z axis, respectively)

(a) scale = $8\sqrt{2}$; vector = $8\sqrt{2}\hat{i}$

(b) scale = 4 ; vector = $16\hat{j}$

(c) scale = 0; vector = $16\hat{k}$

(d) scale = 0 ; vector = 0

(e) scalar = 16; vector = $-16\hat{j}$

Correct answer.

The correct answer is: scalare = $8\sqrt{2}$; vector = $8\sqrt{2}\hat{i}$

Training test

Started Sunday, March 22 2020, 4:23 pm

State Completed

terminated Sunday, March 22 2020, 4:43 pm

The time spent on 20 min 32 seconds

Score 1200.00 / 1200.00

Rating 12.00 on a maximum of 12.00 (100 %)

Question 1

Correct answer

Score 100.00 out of 100.00

Aluminum has a specific heat of $900 \text{ J}/(\text{kgK})$. How much heat is needed to bring 500 g aluminum from 25°C to 30°C ?

- (A) 2250000 J
- (B) cannot be answered because the specific heat is given in $\text{J}/(\text{kgK})$ and instead the temperature in $^\circ\text{C}$
- (C) 900 J
- (D) 2250 J ✓
- (E) 450 J

The correct answer is: 2250 J

Question 2

Correct answer

Score 100.00 out of 100.00

An object moves in a uniformly accelerated rectilinear motion with acceleration a for a time $t = 5 \text{ s}$, covering a distance $d = 8 \text{ m}$. If its initial velocity is $v_0 = 2 \text{ m/s}$, which of the following statements is correct?

- (A) a has opposite verse v_0 ; the final speed v_f has the same direction as v_0 ✓
- (B) a and v_f have the same verse as v_0
- (C) a has opposite verse $v_0, v_f = 0$
- (D) a has the same verse as $v_0, v_f = 0$
- (E) a has the same direction of v_0, v_f opposite

The correct answer is: a has opposite verse v_0 ; the final speed v_f has the same direction as v_0

Question 3

Correct answer

Score 100.00 out of 100.00

A copper wire has a section equal to 1.67 mm^2 and length $L = 50 \text{ cm}$. The resistivity of copper at room temperature is $1.67 \cdot 10^{-8} \Omega \cdot \text{m}$. Determine the resistance R measured at the ends.

- (a) $R = 5.6 \cdot 10^{-1} \Omega$
- (b) $R = 5.6 \cdot 10^{-8} \Omega$
- (c) $R = 5.0 \cdot 10^{-9} \Omega$
- (d) $R = 5.0 \cdot 10^{-5} \Omega$ ✓
- (e) $R = 5.0 \cdot 10^{-3} \Omega$

Correct answer.

The correct answer is: $R = 5.0 \cdot 10^{-5} \Omega$ **Question 4**

Correct answer

Score 100.00 out of 100.00

A body is subjected to two forces \vec{F}_1 and \vec{F}_2 modules $F_1 = 5 \text{ N}$ and $F_2 = 2 \text{ N}$, which form an angle between them $\theta = 60^\circ$. How much is the modulus of the resulting force worth F_T ?

- (A) 30 N
- (B) about 5.5 N
- (C) just over 6 N ✓
- (D) 7 N
- (E) There is not enough data to answer

The correct answer is: just over 6 N

Question 5

Correct answer

Score 100.00 out of 100.00

The elastic forces of two springs, elongated by x_1 and x_2 respectively, have the same intensity. If $\frac{x_1}{x_2} = \frac{2}{3}$, how much is the ratio $\frac{k_1}{k_2}$ of elastic constants?

- (A) 2/3
- (B) 4/3
- (C) 1/4
- (D) 3/2 ✓
- (E) 1/2

The correct answer is: 3/2

Question 6

Correct answer

Score 100.00 out of
100.00

To a point body of mass $m = 1 \text{ kg}$, in motion with speed $v = 20 \text{ m/s}$, a force is applied which decreases its speed up to 10 m/s . If no other forces act on the body, it can be said that:

- (a) the work of the force is equal to -150 J .
- (b) Nothing can be said without knowing how long the force acts.
- (c) the work of force is nil.
- (d) None of the other answers are correct
- (e) the work of the force is equal to 150 J .

Correct answer.

The correct answer is: the work of strength is equal to -150 J .**Question 7**

Correct answer

Score 100.00 out of
100.00

The efficiency of a thermal machine that completes a Carnot cycle is equal to 0.8. Knowing that it absorbs heat from a hot source that is at the temperature $T_C = 1000 \text{ K}$, at what temperature T_F is a cold source?

- (a) 250 K
- (b) 400 K
- (c) 800 K
- (d) 360 K
- (e) 200 K

Correct answer.

The correct answer is: 200 K **Question 8**

Correct answer

Score 100.00 out of
100.00

Archimedes' thrust on a body completely immersed in a fluid only depends

- (a) by the acceleration of gravity and the depth at which the body is located
- (b) from the depth at which the body is located and from its mass
- (c) the volume of the body and the density of the fluid
- (d) the weight of the body and the density of the fluid
- (e) the depth at which the body is located and the volume of fluid moved

Correct answer.

The correct answer is: from the volume of the body and the density of the fluid

Question 9

Correct answer

Score 100.00 out of 100.00

Two charged particles are placed at a distance of 10 cm from each other. They are moved and the force between them quadruples. How far are they now?

- (A) 5 cm ✓
- (B) 2.5 cm
- (C) 25 cm
- (D) you can't answer if you don't know how much the charges are worth
- (E) 40 cm

The correct answer is: 5 cm

Question 10

Correct answer

Score 100.00 out of 100.00

A body of mass m , subjected to the action of a force F , moves with acceleration equal to a . If, keeping the force constant, we halve the mass m , the acceleration of the system:

- (a) doubles ✓
- (b) nothing can be said about the acceleration of the system because it depends on the value of F
- (c) nothing can be said about the acceleration of the system because it depends on the value of m
- (d) remains constant
- (e) is halved

Correct answer.

The correct answer is: double

Question 11

Correct answer

Score 100.00 out of 100.00

In the electrical field, which of these relationships regarding the "volt" unit of measure is correct?

- (to) $1 \text{ volt} = 1 \text{ o} \cdot \mu / \text{ampere}$
- (B) $1 \text{ volt} = 1 \text{ farad} / \text{coulomb}$
- (C) $1 \text{ volt} = 1 \text{ o} \cdot \mu \cdot \text{ampere}$ ✓
- (D) $1 \text{ volt} = 1 \text{ ampere} / \text{o} \cdot \mu$
- (is) $1 \text{ volt} = 1 \text{ coulomb} \cdot \text{farad}$

Correct answer.

The correct answer is: $1 \text{ volt} = 1 \text{ o} \cdot \mu \cdot \text{ampere}$

Question 12

Correct answer

Score 100.00 out of
100.00

If a car is subject to a purely centripetal acceleration equal to 0.1m/s^2 while driving on a circular track of radius $R = 1\text{km}$, what value does the speedometer indicate?

- (TO) 100 m/s
- (B) the speedometer shows increasing speeds, as the motion is accelerated
- (C) 36 m/s
- (D) 10 m/s ✓
- (IS) 100 km/h

The correct answer is: 10 m/s

Training test

Started Friday, March 27 2020, 6:14 PM

State Completed

terminated Friday, March 27 2020, 6:32 pm

The time spent on 17 min 30 seconds

Score 1200.00 / 1200.00

Rating 12.00 on a maximum of 12.00 (100 %)

Question 1

Correct answer

Score 100.00 out of 100.00

A mass body $m = 2\text{kg}$ is supported on a smooth horizontal plane and pulled horizontally to the right by a spring, of constant elasticity $k = 100\text{N/m}$, stretched by a stretch $x = 5\text{cm}$ with respect to its own length. How much is the acceleration of the body worth?

- (TO) 40m/s^2
- (B) 0.25m/s^2
- (C) 2.5m/s^2 ✓
- (D) 4m/s^2
- (IS) 25m/s^2

The correct answer is: 2.5m/s^2

Question 2

Correct answer

Score 100.00 out of 100.00

Calculate the value of the current intensity I flowing in a conductor where the drift velocity of the charge carriers (electrons) is $v = 2 \cdot 10^3 \text{ m/s}$ and the circular section is $S = 5 \text{ mm}^2$. [Assume that the density of carriers is equal to $5 = 10^{10} \text{ m}^{-3}$].

- (a) $I = 8 \text{ A}$ ✓
- (b) $I = 2 \text{ A}$
- (c) $I = 16 \text{ A}$
- (d) $I = 0.08 \text{ A}$
- (e) $I = 0.8 \text{ A}$

Correct answer.

The correct answer is: $I = 8 \text{ A}$

Question 3

Correct answer

Score 100.00 out of
100.00

If the dimensions of mass, length and time are indicated with [M], [L] and [T] respectively, the dimensions of the tangential acceleration are:

- (a) $[L]^{-2} [T]^{-2}$
- (b) $[M] [L]^{-2} [T]^{-2}$
- (c) $[L] [T]^{-2}$ ✓
- (d) $[L] [T]^{-2}$
- (e) $[L]^{-2} [T]$

Correct answer.

-2

The correct answer is: $[L] [T]^{-2}$ **Question 4**

Correct answer

Score 100.00 out of
100.00

A body dropped from the roof of a building hits the ground after $t = 5$ s. If the building was located on a planet without an atmosphere, where the gravitational acceleration was worth at = 6 m / s², what would be the height of the building?

- (a) $h = 750$ m
- (b) $h = 100$ m
- (c) $h = 75$ m ✓
- (d) $h = 30$ m
- (e) $h = 300$ m

Correct answer.

The correct answer is: $h = 75$ m**Question 5**

Correct answer

Score 100.00 out of
100.00

A mass $m = 1$ kg of water a 0°C and an equal mass of ice also a 0°C are placed in a container with perfectly insulating walls which is immediately sealed. If you reopen it after 1 hour, what can you find?

- (A) that the ice has completely melted and therefore there are 2 kg of water a 0°C
- (B) a certain mass of ice has melted so there is more than 1 kg of water and less than 1 kg of ice
- (C) cannot be answered, because the answer depends on the outside temperature which is not known
- (D) that the water has solidified and therefore there are 2 kg of ice
- (E) that nothing has changed: there is always 1 kg of water and 1 kg of ice ✓

The correct answer is: that nothing has changed: there is always 1 kg of water and 1 kg of ice

Question 6

Correct answer

Score 100.00 out of 100.00

A coin is thrown upwards to a height of **50cm** from the launch point: what speed did it have at the beginning of the upward motion? (approximate the acceleration of gravity a **10m/s²**)

- (About **3m/s** ✓)
- (B) approx **10m/s**
- (C) approx **9m/s**
- (D) cannot be answered if the mass of the coin is not known
- (E) approx **0.33m/s**

The correct answer is: approx **3m/s**

Question 7

Correct answer

Score 100.00 out of 100.00

2 vectors are given and \vec{a} in the plane, of modules $|\vec{a}| = 5$ and $|\vec{b}| = 5$. How much is the modulus of their vector difference $= -$ knowing that the angle between the vectors \vec{a} and \vec{b} is 60° ?

- (a) 5 ✓
- (b) 25
- (c) 50
- (d) none of the other answers are correct
- (e) 15

Correct answer.

The correct answer is: 5

Question 8

Correct answer

Score 100.00 out of 100.00

A motor with a maximum power of $9 \cdot 10^4$ W is used to operate a freight elevator that weighs $1.5 \cdot 10^4$ N when empty. What is the maximum weight of the load placed in the hoist that this motor can lift at an average speed of 3 m / s?

- (a) None of the other answers are correct
- (b) There is not enough data to respond.
- (c) $1.510 \cdot 10^4$ N ✓
- (d) $4510 \cdot 10^4$ N
- (e) $7.510 \cdot 10^4$ N

Correct answer.

The correct answer is: $1.5 \cdot 10^4$ N

Question 9

Correct answer

Score 100.00 out of
100.00

-6

-3

A point charge $q = 3 \cdot 10^{-11}$ C, having a mass of $4 \cdot 10^{-6}$ kg, placed in a uniform electric field is subject to an acceleration equal in modulus to $6 \cdot 10^{-3}$ m / s². How much is the electric field module worth?

- (a) 0.125 V / m
- (b) $7.2 \cdot 10^{-6} \text{ V / m}$
- (c) $2.0 \cdot 10^{-6} \text{ V / m}$
- (d) $4.5 \cdot 10^{-6} \text{ V / m}$
- (e) 8.0 V / m ✓

Correct answer.

The correct answer is: 8.0 V / m **Question 10**

Correct answer

Score 100.00 out of
100.00

n moles of perfect gas are located in a container of volume V and pressure P . How much is the absolute temperature T of the gas worth?

- (TO) $T = \frac{pV}{nR}$ ✓
- (B) $T = \frac{pV}{n}$
- (C) $T = \frac{nR}{pV}$
- (D) $T = \frac{pV}{R}$
- (IS) $T = \frac{npV}{R}$

The correct answer is: $T = \frac{pV}{nR}$

Question 11

Correct answer

Score 100.00 out of 100.00

A liquid in stationary motion flows in a horizontal tube. If at a certain point in the tube its diameter increases, what effects can be observed on the flow of liquid?

- (a) In the section of pipe with a larger diameter, the flow rate decreases and the speed of the liquid increases
- (b) In the section of pipe with a larger diameter, the flow rate and speed of the liquid remain unchanged
- (c) In the section of pipe with a larger diameter, the speed of the liquid decreases and the flow rate remains constant ✓
- (d) In the absence of sufficient information on the pressure value, it is not possible to answer
- (e) In the section of pipe with a larger diameter, the speed of the liquid increases and the flow rate remains constant

Correct answer.

The correct answer is: In the section of pipe with a larger diameter, the speed of the liquid decreases and the flow rate remains constant

Question 12

Correct answer

Score 100.00 out of 100.00

A warrior rotates the "bolas" (a rope with a stone attached to one end) on his head with an angular speed of 2 rad/s . At some point he lets them go to hit the opponent. If the bolas rope is 0.5 m long, how fast are the bolas thrown?

- (a) 1 m/s ✓
- (b) 0.25 m/s
- (c) 2 m/s
- (d) 4 m/s
- (e) It is not possible to calculate it because it needs to know the mass of the thrown object.

Correct answer.

The correct answer is: 1 m/s

Training test

Started Tuesday, March 31 2020, 12:44 PM

State Completed

terminated Tuesday, March 31 2020, 12:56 PM

The time spent on 11 mins 36 seconds

Score 975,00 / 1200,00

Rating 9.75 out of a maximum of 12.00 (81 %)

Question 1

Correct answer

Score 100.00 out of 100.00

During a succession of thermodynamic transformations, a gas absorbs a quantity of heat from the outside $Q_1 = 10000$ J, transfers a quantity of heat to the outside $|Q_2| = 3000$ J and does a job $L = 2000$ J. In the end, how much has the internal energy of the gas changed?

- (A) increased by 15000 J
- (B) increased by 5000 J ✓
- (C) decreased by 9000 J
- (D) decreased by 5000 J
- (E) increased by 9000 J

The correct answer is: it has increased by 5000 J

Question 2

Correct answer

Score 100.00 out of 100.00

A ball is thrown upwards. Which of the following statements is false?

- (a) As the ball rises, the force of gravity opposes the motion.
- (b) As the ball rises, the force of gravity does positive work on it. ✓
- (c) The kinetic energy of the ball is a function of its speed.
- (d) The potential energy of the ball increases as it rises.
- (e) The kinetic energy of the ball decreases as it rises.

Correct answer.

The correct answer is: As the ball goes up, the force of gravity does positive work on it.

Question 3

Correct answer

Score 100.00 out of
100.00

A body of mass m , subjected to the action of a force F , moves with acceleration equal to a . If, keeping the force constant, we halve the mass m , the acceleration of the system:

- (a) doubles ✓
- (b) nothing can be said about the acceleration of the system because it depends on the value of m
- (c) is halved
- (d) nothing can be said about the acceleration of the system because it depends on the value of F
- (e) remains constant

Correct answer.

The correct answer is: double

Question 4

Correct answer

Score 100.00 out of
100.00

Two vectors lying on the Cartesian plane (y, z), have the same module equal to 4 units. The first forms an angle equal to 25° with the y axis and the second forms an angle equal to 45° with the direction of the first vector. How much are the scalar and vector product of the first vector for the second? (indicate with \hat{i} , \hat{j} and \hat{k} the versors of the x , y and z axis, respectively)

- (a) scale = 0 ; vector = 0
- (b) scale = 0; vector = $16\hat{k}$
- (c) scalar = $8\sqrt{2}$; vector = $8\sqrt{2}\hat{i}$

- (d) scale = 4 ; vector = $16\hat{j}$
- (e) scalar = 16; vector = $-16\hat{j}$

Correct answer.

The correct answer is: scalare = $8\sqrt{2}$; vector = $8\sqrt{2}\hat{i}$

Question 5

Answer not given

Max score: 100.00

In an oven that delivers a constant power $P = 333$ W, an ice cube of mass $m = 1$ kg is placed at 0°C . Knowing that all the ice will melt in 1000 s, determine the value of the latent heat of melting λ of the ice.

- (to) $\lambda = 111$ kJ / kg
- (B) $\lambda = 333$ kJ / kg
- (C) $\lambda = 999$ kJ / kg
- (D) $\lambda = 222$ kJ / kg
- (is) $\lambda = 666$ kJ / kg

Wrong answer.

The correct answer is: $\lambda = 333$ kJ / kg**Question 6**

Wrong answer

Score -25.00 out of 100.00

If the intensity of current flowing through a resistance within a circuit doubles, how does the heat produced on it change per unit of time due to the Joule effect?

- (A) does not change
- (B) doubles
- (C) is halved
- (D) becomes $1/4$
- (E) quadruples

The correct answer is: quadruple

Question 7

Correct answer

Score 100.00 out of 100.00

What force do we have to apply to lift an object from the ground?

- (a) A force directed downwards and with a modulus greater than the weight of the object
- (b) A force directed downwards and with modulus greater than zero
- (c) A force directed upwards and with modulus greater than zero
- (d) It depends on the shape of the body
- (e) A force directed upwards and with a modulus greater than the weight of the object

Correct answer.

The correct answer is: A force directed upwards and with a modulus greater than the weight of the object

Question 8

Correct answer

Score 100.00 out of 100.00

The oil flows, filling it completely, in a square section tube with a side equal to 10 cm, at an average speed of 20 m / s. It can be said that:

- (a) The volume flow rate is approximately $0.02 \text{ m}^3 / \text{s}$
- (b) The volume flow rate is approximately $4 \text{ m}^3 / \text{s}$
- (c) The volume flow rate is approximately $1.5 \text{ m}^3 / \text{s}$
- (d) To know the volume flow rate, the density of the oil should be known
- (e) The volume flow rate is approximately $0.2 \text{ m}^3 / \text{s}$

Correct answer.

The correct answer is: The volume flow is equal to about $0.2 \text{ m}^3 / \text{s}$

Question 9

Correct answer

Score 100.00 out of 100.00

Inside a copper sphere the electric field is initially zero. If a negative charge is distributed on the sphere, the electric field inside will be

- (A) positive but decreasing towards the center of the sphere
- (B) null only in the center of the sphere
- (C) positive
- (D) negative
- (E) null

The correct answer is: null

Question 10

Correct answer

Score 100.00 out of 100.00

A body moves with uniform circular motion on a circumference of radius $R = 0.2\text{m}$. Its speed module is $v = 2\text{m/s}$. How much is its angular velocity worth ω ?

- (A) $0,4 \text{ rad/s}$
- (B) $2\pi \text{ rad/s}$
- (C) 1 rad/s
- (D) 10 rad/s
- (E) $4\pi \text{ rad/s}$

The correct answer is: 10 rad/s

Question 11

Correct answer

Score 100.00 out of
100.00

In the electrical field, which of these relationships regarding the "volt" unit of measure is correct?

- (to) $1 \text{ volt} = 1 \text{ ampere} / \text{ohm}$
- (B) $1 \text{ volt} = 1 \text{ coulomb} \cdot \text{farad}$
- (C) $1 \text{ volt} = 1 \text{ farad} / \text{coulomb}$
- (D) $1 \text{ volt} = 1 \text{ ohm} \cdot \text{ampere} \checkmark$
- (is) $1 \text{ volt} = 1 \text{ ohm} / \text{ampere}$

Correct answer.

The correct answer is: $1 \text{ volt} = 1 \text{ ohm} \cdot \text{ampere}$ **Question 12**

Correct answer

Score 100.00 out of
100.00

A car moves in a straight direction, starting from a standstill, with constant acceleration equal to 10 m/s^2 . What will be your speed after covering 45 m ?

- (a) 20 m/s
- (b) 5 m/s
- (c) 50 m/s
- (d) 40 m/s
- (e) $30 \text{ m/s} \checkmark$

Correct answer.

The correct answer is: 30 m/s

Training test

Started Tuesday, March 31 2020, 1:14 pm

State Completed

terminated Tuesday, March 31 2020, 1:23 pm

The time spent on 9 min 1 second

Score 950,00 / 1200,00

Rating 9.50 on a maximum of 12.00 (79 %)

Question 1

Correct answer

Score 100.00 out of 100.00

An object moves in a uniformly accelerated rectilinear motion with acceleration a for a time $t = 5 \text{ s}$, covering a distance $d = 8 \text{ m}$. If its initial velocity is $v_0 = 2 \text{ m/s}$, which of the following statements is correct?

- (A) a has the same verse as v_0 , $v_f = 0$
- (B) a and v_f have the same verse as v_0
- (C) a has opposite verse v_0 ; the final speed v_f has the same direction as v_0 ✓
- (D) a has the same direction of v_0 , v_f opposite
- (E) a has opposite verse v_0 , $v_f = 0$

The correct answer is: a has opposite verse v_0 ; the final speed v_f has the same direction as v_0

Question 2

Correct answer

Score 100.00 out of 100.00

A body dropped from the roof of a building hits the ground after $t = 5 \text{ s}$. If the building was located on a planet without an atmosphere, where the gravitational acceleration was worth $a = 6 \text{ m/s}^2$, what would be the height of the building?

- (a) $h = 750 \text{ m}$
- (b) $h = 75 \text{ m}$ ✓
- (c) $h = 100 \text{ m}$
- (d) $h = 300 \text{ m}$
- (e) $h = 30 \text{ m}$

Correct answer.

The correct answer is: $h = 75 \text{ m}$

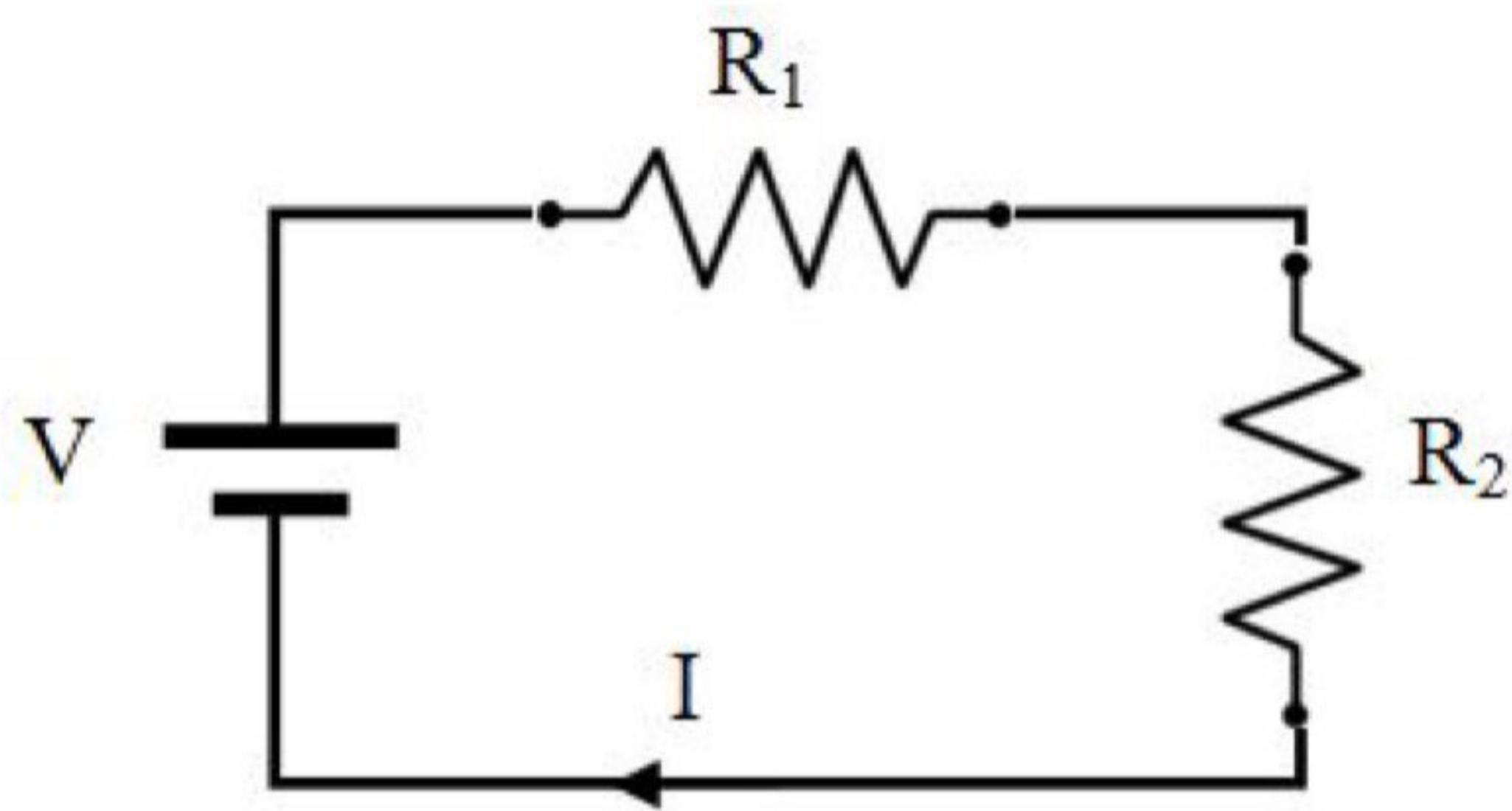
Question 3

Wrong answer

Score -25.00 out of 100.00

A body starts from a stationary top of a smooth inclined plane of length $L = 2.5$ m and angle at the top $\theta = 30^\circ$. Considering $g = 10$ m / s 2 , the time t taken by the body to reach the base of the plane is:

- (a) $t = 1$ s
- (b) $t = 4$ s
- (c) I can't tell if I don't know the mass of the body X
- (d) $t = 3$ s
- (e) $t = 2$ s


Wrong answer.

The correct answer is: $t = 1$ s**Question 4**

Correct answer

Score 100.00 out of 100.00

Consider the circuit shown in the figure, where $R_1 = 10\Omega$, $V = 30V$, and the current and ' $I = 2A$. How much is the resistance worth R_2 ?

- (TO) $R_2 = 1\Omega$
- (B) $R_2 = 5\Omega$ ✓
- (C) $R_2 = 15\Omega$
- (D) $R_2 = 10\Omega$
- (IS) $R_2 = 7.5\Omega$

The correct answer is: $R_2 = 5\Omega$

Question 5

Correct answer

Score 100.00 out of
100.00

In an oven that delivers a constant power $P = 333$ W, an ice cube of mass $m = 1$ kg is placed at 0°C . Knowing that all the ice will melt in 1000 s, determine the value of the latent heat of melting λ of the ice.

- (to) $\lambda = 666$ kJ / kg
- (B) $\lambda = 111$ kJ / kg
- (C) $\lambda = 222$ kJ / kg
- (D) $\lambda = 999$ kJ / kg
- (is) $\lambda = 333$ kJ / kg ✓

Correct answer.

The correct answer is: $\lambda = 333$ kJ / kg**Question 6**

Wrong answer

Score -25.00 out of
100.00

A man must carry a heavy crate from the ground floor to the first floor of a warehouse. To do this, he can push it along one of the two ramps he has available: a longer and less inclined and a shorter and more inclined. If man climbs in any case with the same constant speed, which ramp requires him to exercise more power? Neglect friction,

- (a) In the case of the less inclined ramp, since it takes longer.
- (b) In the case of the most inclined ramp, since it takes less time.
- (c) None of the other answers are correct
- (d) The ramps are equivalent, because the power is however always zero, since there is no friction. ✗
- (e) The ramps are equivalent, because the power depends only on the difference in altitude of the floors.

Wrong answer.

The correct answer is: In the case of the more inclined ramp, since it takes less time.

Question 7

Correct answer

Score 100.00 out of
100.00

2 vectors are given and \vec{a} in the plane, of modules $|\vec{a}| = 5$ and $|\vec{b}| = 5$. How much is the modulus of their vector difference $\vec{d} = \vec{b} - \vec{a}$ knowing that the angle between the vectors \vec{a} and \vec{b} is 60° ?

- (a) none of the other answers are correct
- (b) 50
- (c) 5 ✓
- (d) 25
- (e) 15

Correct answer.

The correct answer is: 5

Question 8

Correct answer

Score 100.00 out of
100.00

3 3

On the bottom of a swimming pool filled with water (density equal to 10^3 kg/m^3) the pressure is equal to 150 000 Pa. Knowing that the atmospheric pressure is 10^5 Pa and assuming the acceleration of gravity equal to 10 m/s^2 , determine the depth h of the swimming pool

- (a) about 0.5 m
- (b) about 3 m
- (c) about 5 m ✓
- (d) about 10 m
- (e) can not be calculated with the data provided

Correct answer.

The correct answer is: about 5 m

Question 9

Correct answer

Score 100.00 out of
100.00

The efficiency of a thermal machine that completes a Carnot cycle is equal to 0.8. Knowing that it absorbs heat from a hot source that is at the temperature $T_c = 1000$ K, at what temperature T_F is a cold source?

- (a) 800 K
- (b) 360 K
- (c) 200 K ✓
- (d) 250 K
- (e) 400 K

Correct answer.

The correct answer is: 200K

Question 10

Correct answer

Score 100.00 out of
100.00

A $4 \cdot 10^{-6}$ C charge particle moves from a 100 V potential point to a 20 V potential point. How much is the work done by the electrostatic field on the charge in absolute terms?

- (a) $2.0 \cdot 10^{-4}$ J
- (b) $4.0 \cdot 10^{-6}$ J
- (c) $5.0 \cdot 10^{-4}$ J
- (d) $3.2 \cdot 10^{-5}$ J ✓
- (e) $8.0 \cdot 10^{-7}$ J

Correct answer.

The correct answer is: $3.2 \cdot 10^{-4}$ J**Question 11**

Correct answer

Score 100.00 out of
100.00

In the International System, a vector quantity is measured in $\text{kg m}^2/\text{s}^2$. What size could it be?

- (A) Momentum
- (B) Entropy
- (C) Moment of momentum
- (D) Impulse of a force
- (E) Moment of a force ✓

The correct answer is: Moment of a force

Question 12

Correct answer

Score 100.00 out of
100.00

In a circular motion, knowing angular velocity and radius:

- (a) It is possible to calculate the tangential acceleration, if the mass and the centripetal acceleration are also known
- (b) It is possible to calculate the tangential speed ✓
- (c) None of the other answers are correct
- (d) It is possible to calculate the tangential acceleration, if the mass is also known
- (e) The centripetal force can be calculated

Correct answer.

The correct answer is: It is possible to calculate the tangential speed

DAAN academy