

The inequality

$$\frac{1}{x-1} + \frac{2(x+2)}{x^2-1} + \frac{1}{x+1} > 0$$

is satisfied for

- A. $x > -1$
- B. $x < 0$
- C. every real number x
- D. $x > 1$
- E. $x \neq \pm 1$

$$\frac{x+x+2x+4+x-x}{(x-1)(x+1)} > 0$$

$$\frac{4x+4}{(x-1)(x+1)} > 0 \Rightarrow \frac{4(x+1)}{(x-1)(x+1)} > 0$$

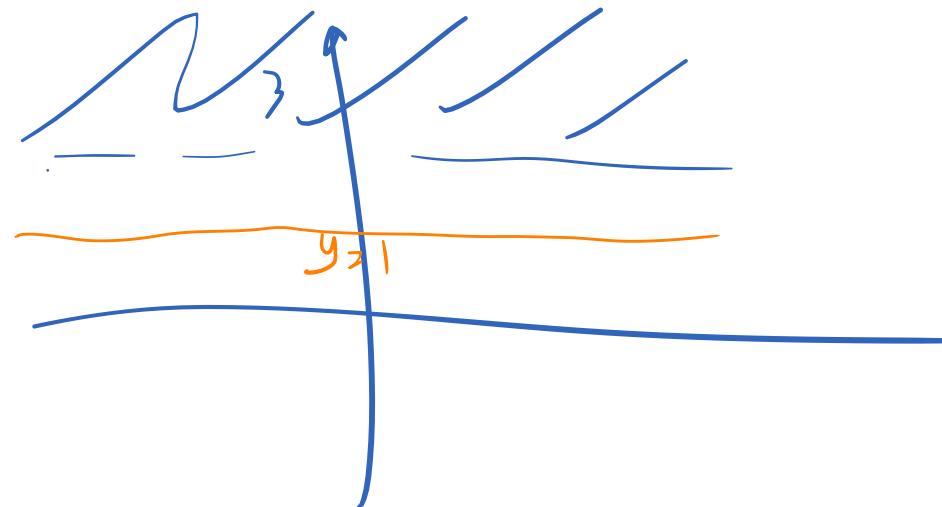
$$\frac{4}{(x-1)} > 0$$

$$x > 1$$

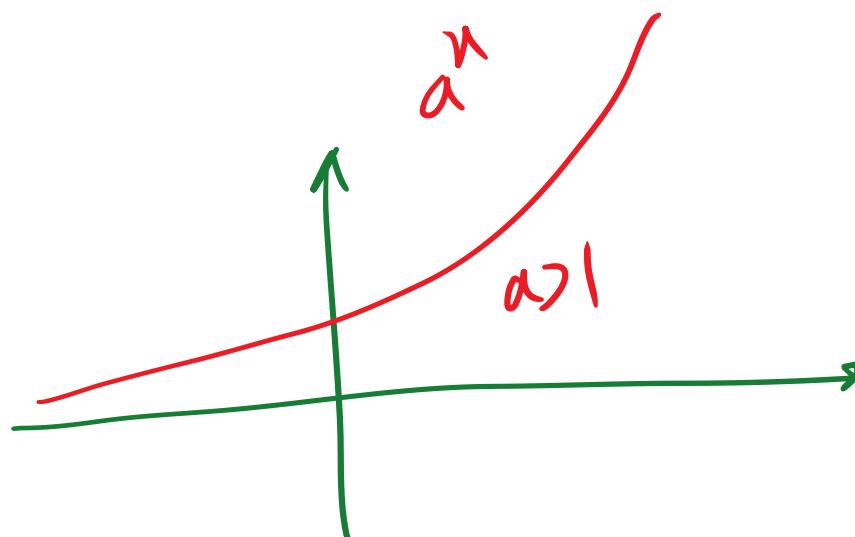
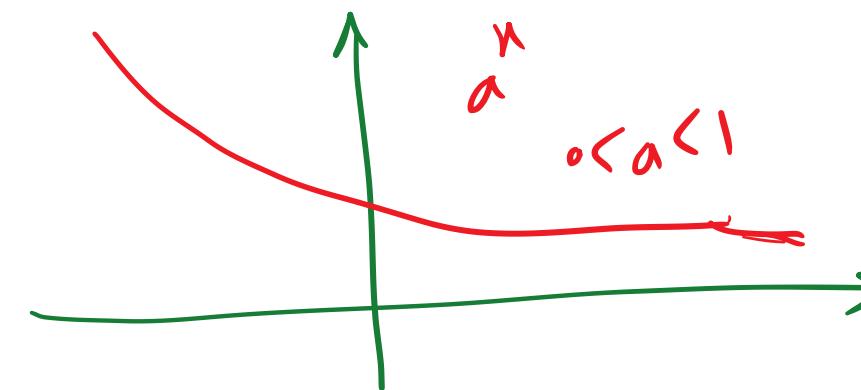
Which among the following functions has the graph fully contained in the halfplane $y > 1$ of the Cartesian plane?

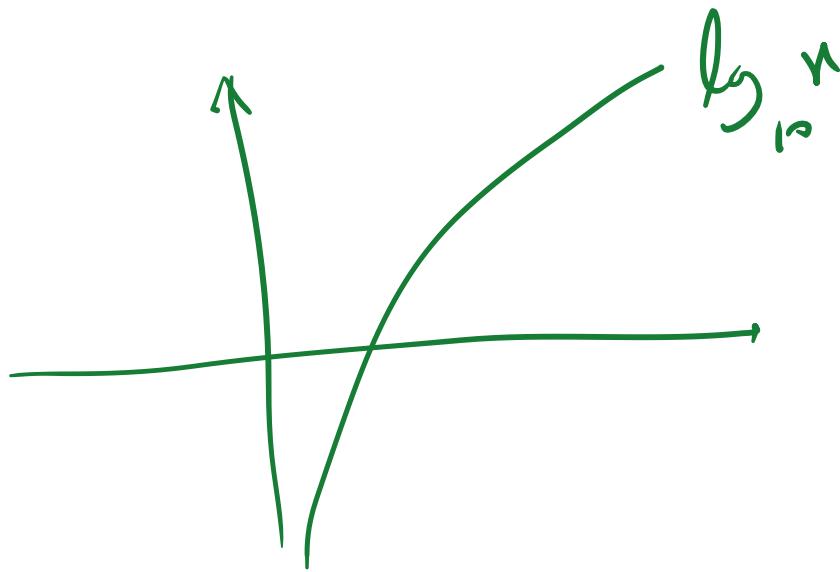
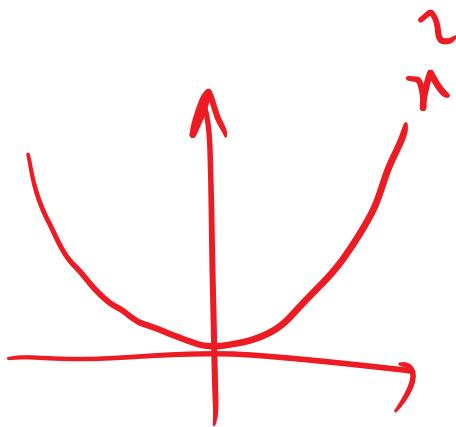
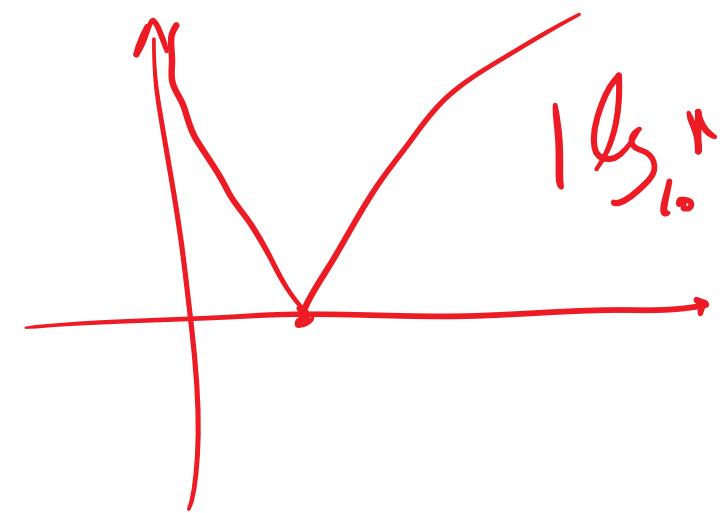
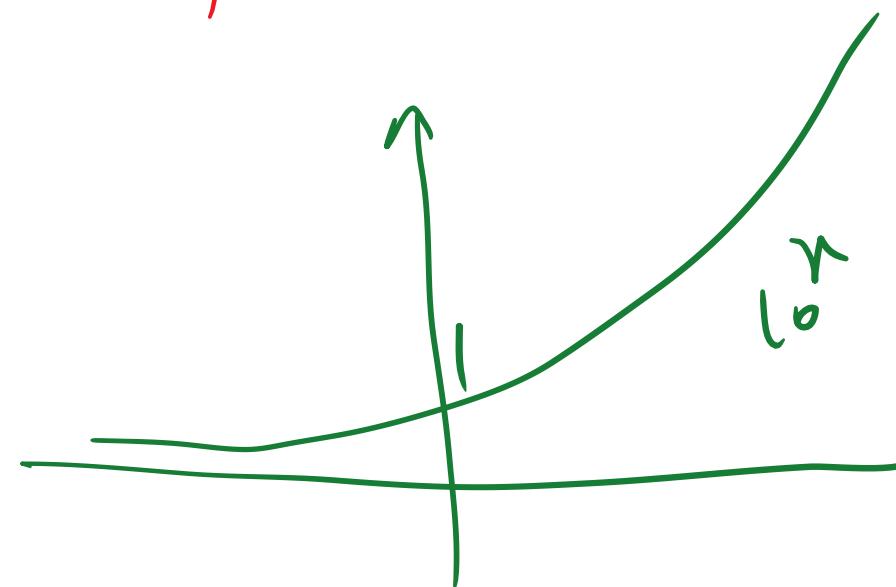
- A. $y = 10^{-x} + 3$
- B. $y = |\log_{10} x|$
- C. $y = 2 + \log_{10} x$
- D. $y = x^2$
- E. $y = 10^x$

$$\frac{10^3}{10^0}$$



$$10^{-n} \times (10^{-1})^n = 10^{-n-n} = 10^{-2n}$$





If the measure of an angle is 15° , its measure in radians is

$$30^\circ = \frac{\pi}{6} \quad \stackrel{?}{\rightarrow} \quad 15^\circ = \frac{\pi}{12}$$

- A. $\frac{\pi}{18}$
- B. $\frac{\pi}{12}$
- C. $\frac{\pi}{10}$
- D. $\frac{\pi}{24}$
- E. $\frac{\pi}{2}$

$$D \times \frac{\pi}{180} \rightarrow R$$

$$R \times \frac{180}{\pi} \rightarrow D$$

$$15^\circ \times \frac{\pi}{180} = \frac{\pi}{12}$$

In the Cartesian plane, the straight line with equation

$$x + 2y + 2 = 0 \rightarrow 2(y+1) = -x$$

and the parabola with equation

$$y = (x - 1)^2$$

$$\begin{aligned} y+1 &= -\frac{x}{2} \rightarrow y = -\frac{x}{2} - 1 \\ y &= (x-1)^2 \end{aligned}$$

have

- A. four distinct intersection points
- B. a unique intersection point
- C. three distinct intersection points
- D. no intersection point
- E. two distinct intersection points

$$(x-1)^2 = -\frac{x}{2} - 1 \rightarrow x^2 - 2x + 1 = -\frac{x}{2} - 1$$

$$x^2 - \frac{3}{2}x + 2 = 0$$

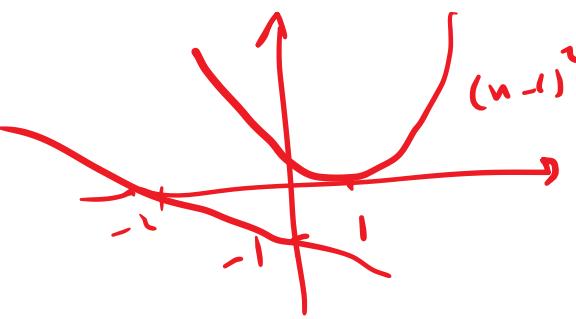
$$\Delta = \frac{9}{4} - 8 < 0 \rightarrow \text{no real roots}$$

قطعی

$$x + 2y + 2 = 0$$

$$x = 0 \rightarrow y = -1$$

$$y = 0 \rightarrow x = -2$$



$$2x - y - 1 = 0$$

$$y = x^2 - 1$$

$$\begin{cases} y = 2x - 1 \\ y = x^2 - 1 \end{cases}$$

$$x^2 - 1 = 2x - 1$$

$$x^2 - 2x = 0$$

$$x(x - 2) = 0$$

$$\begin{cases} x = 0 \\ x = 2 \end{cases}$$

دون تفاصيل

The solution of the inequality

$$\log_{10} x > \log_{10} (x - 1)$$

is

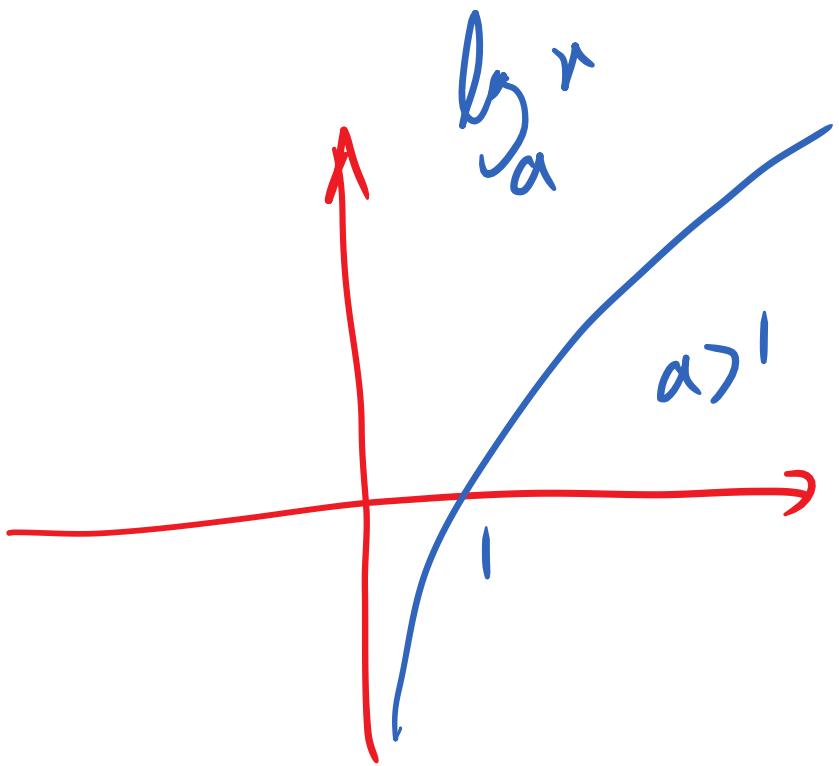
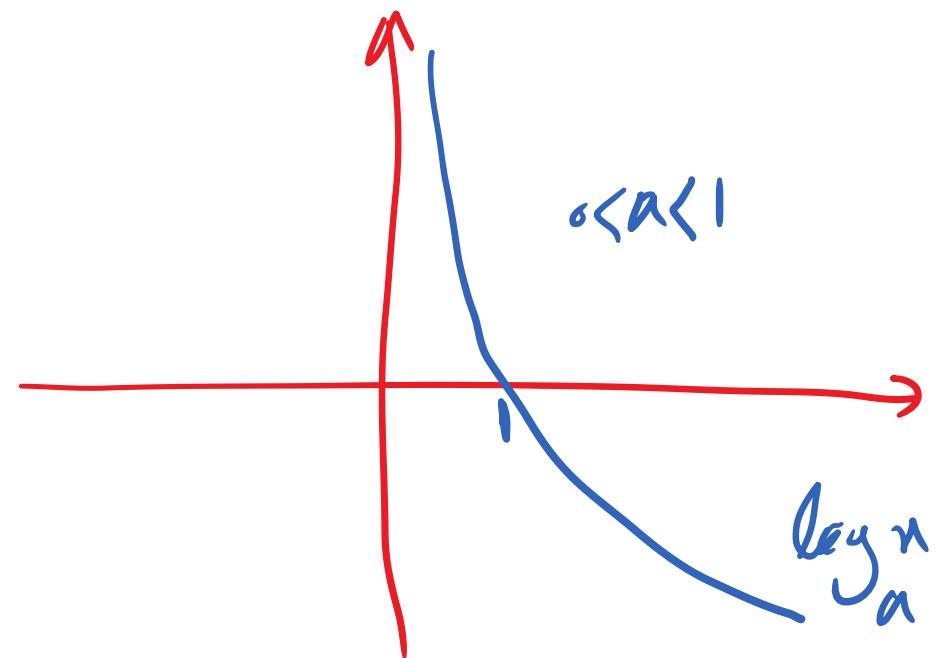
$0 < x < 1$
 $x \neq 1$

$x > 0$

$x > 1$

$x > 1$

- A. $0 < x < 1$
- B. $x > 1$
- C. $x > 0$
- D. every real value of x
- E. $x \geq 1$



The product of two positive real numbers x and y with $x < y$

فیصلہ

- A. can be greater than y or less than x
- B. is always greater than y
- C. can be neither equal to x nor equal to y
- D. is always between x and y
- E. is always less than x

x	y	xy
1	2	2
2	3	6
0.1	0.2	0.02

The set of solutions to the inequality

$$\log_b a = c$$

$$a = b^c$$

$$\log_b a < c \rightarrow a < b^c$$

is

A. $x < 10$

B. $1 < x < 10^{\sqrt{10}}$

C. $x < 10^{\sqrt{10}}$

D. every real value of x

E. $1 < x < 10$

$$\log_{10}(\log_{10} x) \leq \frac{1}{2}$$

$$\log_{10} n < \log_{10} \frac{1}{2}$$

$$\log_{10} n < \sqrt{10}$$

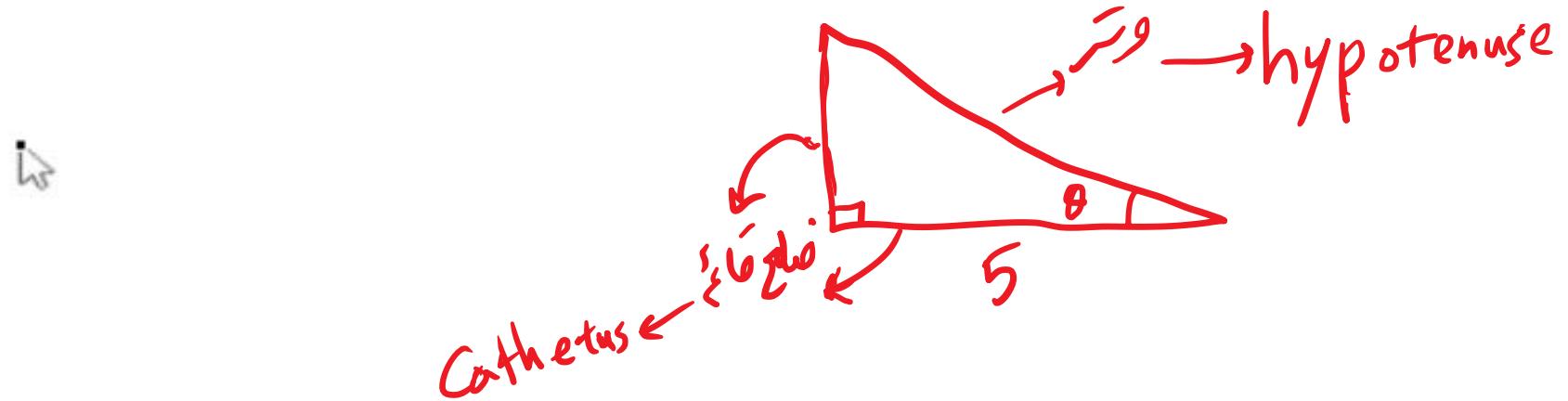
$$n < 10^{\sqrt{10}}$$

Only one of the following polynomials vanishes both for $x = -2$ and for $x = 2$.
Which one?

- A. $P(x) = 2x^3 + x^2 - 8x - 4$ $P(2) = 0$
 $P(-2) = 0$
- B. $P(x) = 2x^3 + 3x^2 - 3x - 2$
- C. $P(x) = 2x^3 + x^2 - 2x - 1$
- D. $P(x) = 2x^3 - 5x^2 + x + 2$
- E. $P(x) = 2x^3 - x^2 - 5x - 2$

In a right-angled triangle a cathetus is 5 cm long, and the cosine of the adjacent angle is equal to 4/5.

Determine the length of the hypotenuse (in cm)?



- A. 4
- B. 6,25
- C. 10
- D. 8,33
- E. 3

$$\cos \theta = \frac{5}{x} = \frac{4}{5} \Rightarrow 4x = 25 \rightarrow x = \frac{25}{4} = 6.25$$

$$\text{6. } \text{Nó } / \text{Né } (x-\alpha)^2 + (y-\beta)^2 = R^2 \\ \text{Nó } \alpha, \beta, R$$

Let us consider, in the Cartesian plane, the family of circles with equation

$$x^2 + y^2 - 4x - 4y = K,$$

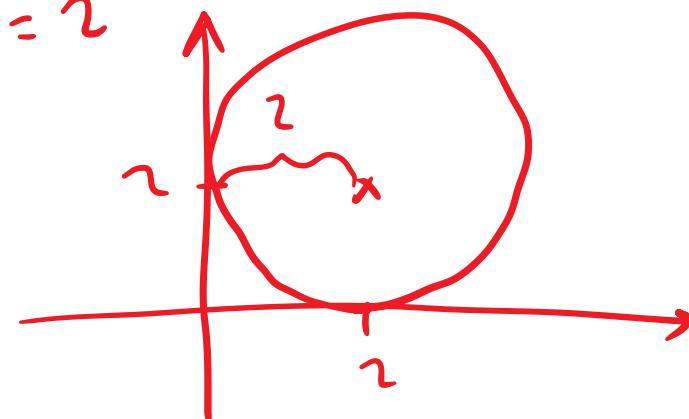
where K is a real parameter. Does there exist a circumference of the family which is tangent to both coordinated axes?

$$\underbrace{x^2 - 4x + 4 - 4}_{\frac{1}{2}} + \underbrace{y^2 - 4y + 4 - 4}_{\frac{1}{2}} = K \\ (x-2)^2 + (y-2)^2 = K + 8 = r^2$$

- A. Yes, for $K = -4$
- B. Yes, for $K = 12$
- C. Yes, for $K = 4$
- D. No
- E. Yes, for $K = 0$

DAAN
ACADEMY

$$r^2 = 4 \\ K + 8 = 4 \\ K = 4 - 8 \\ K = -4$$



The set of real numbers x that satisfy the inequality

$$-x^2 + 7 > 0$$

$$x^2 < a \rightarrow |x| < \sqrt{a}$$

is

$$\begin{aligned} x^2 &< 7 \\ |x| &< \sqrt{7} \end{aligned}$$

- A. $|x| < \sqrt{7}$
- B. $|x| > \sqrt{7}$
- C. $x < 0$
- D. $x > \sqrt{7}$
- E. $x < -\sqrt{7}$

$$\begin{array}{ll} x^2 < a & \rightarrow -\sqrt{a} < x < \sqrt{a} \\ x^2 > a & \rightarrow x > \sqrt{a} \quad x < -\sqrt{a} \\ \\ |x| < a & \rightarrow -a < x < a \\ |x| > a & \rightarrow x > a \quad x < -a \end{array}$$

Three times 27^3 is

- A. 81^3
- B. 3^7
- C. 3^9
- D. 27^4
- E. 3^{10}

$$3 \times 27^3 = 3 \times (3^3)^3 = 3 \times 3^9 = \underline{\underline{3^{10}}}$$

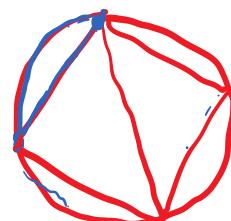
Two integers x and y have different sign. Their sum is

- A. always zero
- B. negative if $|x| > |y|$ and $x > 0$
- C. always negative
- D. positive if $|x| > |y|$ and $x > 0$
- E. always positive

x y
 } -2

If the diagonal of a square and the diameter of a circle have the same length, then

- A. the square and the circle are equivalent
- B. the perimeter of the square is longer than the circumference, and the area of the square is greater than the area of the circle
- C. the perimeter of the square is shorter than the circumference, and the area of the square is less than the area of the circle
- D. the perimeter of the square is longer than the circumference, and the area of the square is less than the area of the circle
- E. the perimeter of the square is shorter than the circumference, and the area of the square is bigger than the area of the circle



For every real number $a > 0$, the expression

$$\sqrt[3]{a \cdot \sqrt{a}} : \sqrt[4]{a^2 \cdot \sqrt[3]{a^2}} = \frac{\sqrt[3]{a \cdot a^{\frac{1}{2}}}}{\sqrt[4]{a^2 \cdot a^{\frac{2}{3}}}} = \frac{\sqrt[3]{a^{\frac{5}{2}}}}{\sqrt[4]{a^{\frac{8}{3}}}} = \frac{\left(a^{\frac{5}{2}}\right)^{\frac{1}{3}}}{\left(a^{\frac{8}{3}}\right)^{\frac{1}{4}}} = \frac{a^{\frac{5}{6}}}{a^{\frac{2}{3}}}$$

is equal to

- A. $\sqrt[6]{\frac{1}{a}}$
- B. \sqrt{a}
- C. a
- D. 1
- E. $\frac{1}{\sqrt[3]{a}}$

$$= a^{\frac{5}{6} - \frac{2}{3}} = a^{\frac{3}{6} - \frac{4}{6}} = a^{-\frac{1}{6}} = \frac{1}{a^{\frac{1}{6}}} = \sqrt[6]{\frac{1}{a}}$$